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INTRODUCTION
Osteoarthritis (OA) is a progressive bone and 

musculoskeletal disease that most usually affects the hands, 
hips, and knees,1,2 Symptoms of OA include “slowly growing 
joint pain, discomfort, rigidity, joint damage, decreased 
mobility, and structural abnormalities”.3 The increased life 
expectancy in modern society is anticipated to increase the 
prevalence and incidence of this common and frequently-
occurring disease, which seriously affects people’s daily 
lives. The major objectives of clinical OA therapy are pain 
management, maintaining or enhancing joint mobility, 

and improving health conditions.4 However, OA treatment 
remains relatively limited based on its pathogenesis.5,6 

OA can be brought on by “prior joint injury, aberrant joint 
or limb formation, and genetic factors”.1,7 Those who are 
overweight, engaging in work that causes high joint stress, or 
possess different-sized legs have a higher risk.8-10 Although the 
primary pathogenesis of OA is not clear, there is no doubt that 
inflammation plays an important role,3,11 with low-grade 
inflammation of the entire joint promoting disease progression, 
leading to cartilage degradation, bone remodeling, and synovial 
hyperplasia.12 Increased levels of many inflammatory mediators 
and cytokines are recognized in, joint effusion, cartilage, and 
synovium in patients with OA, including IL-1, IL-6, IL-10, and 
TNF-α.13,14 For example, TNF-α induces NF-κB/p65 signaling to 
promote synovitis, cartilage degeneration, and OA progression 
in mice.15 Although these inflammatory variables contribute to 
the etiology of OA, further research is needed to determine how 
exactly they cause damage and how they heal it, therefore, the 
immune microenvironment of OA is currently being explored. 

Immune cells including macrophages, T cells, B cells, 
plasma cells, natural killer cells, and dendritic cells have been 

ABSTRACT
Background • Osteoarthritis (OA) is a diverse disorder 
that most frequently affects elderly people and makes them 
disabled. Many investigations have shown that the etiology 
of OA depends on cartilage wear, but immunology also 
plays a significant role. Thus, the goal of this study was to 
define the immune-related etiology of OA. 
Methods • Data from the “Gene Expression Omnibus 
(GEO)” database were used to find differentially expressed 
genes (DEGs), and the “Cell-type Identification By Estimating 
Relative Subsets Of RNA Transcripts (CIBERSORT) 
algorithm” was employed to calculate the quantity of distinct 
immune cells. We analyzed the results to identify patient 
subgroups and compare major active pathways.
Results • The macrophage cell population accounts for 
the greatest percentage of infiltrating immune cells in OA. 
One hundred and twenty-two common intersection genes 
were identified, with the network analysis of protein- 

protein interactions revealing ten hub genes related to 
OA, including CXCL8, JUN, ATF3, DUSP1, PTGS2, IL6, 
MMP9, FOS, NFKBIA, and MYC. The random forest model 
showed that memory-activated CD4 T cells are strongly 
correlated with other immune cell types, while neutrophils 
have the weakest correlation with other immune cell types. 
Violin plots showed that OA patients had a significantly 
larger quantity of plasma cells and resting mast cells, with 
a significantly smaller quantity of resting memory CD4 T 
cells and activated mast cells than healthy controls.
Conclusions • Two immune-related subgroups of OA 
were identified by semi-supervised clustering analysis of 
microarray data, and core genes were also determined by 
network analysis. A group of the immune infiltrating cells 
was selected by random forest analysis suggesting they are 
related to the pathogenesis of OA. (Altern Ther Health 
Med. [E-pub ahead of print.])
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cell types in each specimen was displayed using the “heatmap 
R package” (available at https://CRAN.R-project.org/
package=pheatmap), and the relationship between immune 
cell types was presented using the “copilot R program”.29 

Consensus cluster and differentially expressed gene 
(DEGs) analysis

Unsupervised clustering of the OA patient samples was 
performed with the “ConsensusClusterPlus R package”30 
using the topmost variable genes to confirm the optimum 
number of clusters with the gene expression profile. The 
relative change under the area of the distribution curve 
determined the number of clusters. Using the limma R 
tools,31 DEGs were found, and those with an absolute log2 
fold change larger than 1 and an adjusted P < .05 were filtered 
out. Using the ggplot2 R tool, a volcano plot and heatmap of 
DEGs were constructed.25

Weighted correlation network analysis (WGCNA)
WGCNA was performed using the “WGCNA R package” 

following the gene co-expression patterns to investigate the 
gene co-regulatory network in OA patients.32 To create a 
topological overlap matrix from the gene correlation network, 
the power parameter was chosen. The dynamic hybrid cut 
was used to identify closely interconnected modules, and the 
module with the biggest difference was evaluated.

Enrichment Analysis
We carried out “Gene Ontology (GO)33 and KEGG34 

pathway analysis of immune genes” using the “clusterProfiler 
R package”.35 The “enrich plot R program” was used to display 
significant GO biological processes (false discovery rate 
(FDR) less than 0.05). To determine which biological 
processes are assisting the OA clusters, the clusterProfiler R 
package was used to perform “gene set enrichment analysis 
(GSEA)”35 with GO gene sets (C2) from the  “Molecular 
Signature Database (MSigDB; version 6.1)”.36 The gene 
expression matrix of OA and control samples were used as 
input data for one thousand permutations, and significant 
results were defined as having an FDR q-value of less than 
0.25 and P < .05. 

Construction and investigation of Protein-protein 
interaction (PPI) network 

We utilized the “STRING database”37,38 for analyzing the 
PPI relationship of DEGs related to OA. The DEGs were 
uploaded into the STRING database and the PPIs were 
downloaded from the website. Only interactors with a 
medium combined confidence score greater than 0.4 were 
retained. Then, Cytoscape was used to carefully monitor the 
whole network.39 The hub genes inside the PPI network were 
discovered using the Cytoscape plugins cytoHubba and 

identified in the synovium tissue of OA individuals,16-18 and 
their recruitment may contribute to OA pain through the 
production of allogenic factors that increase the stimulation 
of sensory neurons.19 “Innate lymphocytes, γδ+ T cells, and 
CD4+ T cells” have elevated IL-17 expression and contribute 
to senescence-related OA progression.20 Together, our 
findings show that immunological infiltration plays a 
significant role in the development of OA, however, there is 
no research analyzing the overall role of immune cells and 
inflammatory factors in OA pathogenesis. 

In this study, two immune-related subgroups of OA were 
identified by semi-supervised clustering analysis of 
microarray data, and core genes were also determined by 
network analysis. A group of immune infiltrating cells was 
selected by random forest analysis suggesting that they are 
related to the pathogenesis of OA.

MATERIALS AND METHODS
Collection of micro-array data and clinical features of data

We retrieved the gene expression data from the 
GSE55235 (which included 10 OA patients and 10 control 
individuals) and the GSE55457 (which included 10 OA 
patients and 10 control individuals), both based on platform 
GPL96 21 from “the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/)” utilizing 
“GEOquery R package”22 (see Table 1 for details). The affy R 
package from Bioconductor was used to extract raw 
Affymetrix CEL files and normalize them using the “robust 
multi-array analysis (RMA) algorithm” technique.23 The 
normalization procedure was performed separately for each 
data set and log2-transformed values by RMA were used to 
present gene expression levels. Those genes that had a value 
of expression of more than one were retained, and the less 
abundant data were disqualified. A gene expression profile 
matrix was created by using the average probe expression for 
numerous probes referring to a single gene as the gene 
expression value. Batch effects correction was performed by 
the sva R package24 and visualized in a boxplot using the 
ggplot2 R package.25 

The relationship between immune cell type and OA
Depending on complicated tissues’ gene expression 

profiles, the “CIBERSORT method” is frequently utilized to 
predict the “immune cell component” and quantity,26, 27 and 
is shown to perform better than conventional techniques.28 
This study determined the proportion of immune cells in the 
OA patients using “CIBERSORT and the LM22 signature” 
from the microarray data, demonstrating that LM22, a 
leukocyte gene signature matrix of 547 genes, can discriminate 
22 different types of immune cells.26 First, the normalized 
gene expression matrix was uploaded into CIBERSORT 
using the LM22 gene signature and then run for 1000 
permutations. The result was a P value which shows 
deconvolution in each of the samples and a threshold of P 
less than 0.05 was included for identifying the immune 
infiltration matrix. The distribution of 22 different immune 

Table 1. Details of Datasets GSE55235 and GSE55457
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The construction of immune-related subtypes in OA patients
To unravel the immune characteristics of OA patients, 

we applied consensus clustering of immune-related genes 
and divided the OA patients into two sub-clusters (Figure 
3A). Gene expression profiles of the two clusters were 
compared, and the results identified 132 DEGs (FDR<0.05 

ClusterViz according to the degree of connectedness.39 The 
top 10 hub genes with greater Maximal Clique Centrality 
(MCC) values were shown by the node degree. 

The immune model
To study the main immune cell types involved in OA, we 

constructed an immune-related model based on the “random 
forest R package”.40 The “stepwise backward selection method” 
was used to determine the best combination of recursive 
prediction candidate modules. 10 percent of the characteristics 
were removed in each iteration, with the remaining features 
used to construct the random forest model. A variable 
selection technique known as backward stepwise selection (or 
backward elimination) starts with a model that includes all 
variables being considered (referred to as the Full Model) and 
commences trying to remove the least relevant variables one at 
a time until a pre-determined stopping rule has arrived or 
there are no more variables in the model. The relationship 
between each hub gene and the important immune cells in the 
immunological model was examined using the “ggpubr R 
package” (https://CRAN.R-project.org/package=ggpubr). 

Statistical analysis
For data acquisition and quantitative models, R software 

(version 3.6.5, http://r-project.org/) was utilized. Independent 
t tests were used to determine the significance of normally 
distributed continuous variables. Non-normally distributed 
continuous variables were subjected to the Mann-Whitney U 
test. The association between various genes was compared 
using the Pearson correlation. The statistical P values were 
two-sided, and statistical significance was set at P < .05. 

RESULTS
Data Progress and Quality Control

First, raw data from GSE55235  and  GSE55457 were 
preprocessed and normalized separately. Boxplot diagrams 
and PCA plots (Figures 1A and 1B) before and after (Figures 
1C and 1D ) the batch correction showed that the batch was 
well removed, and that data can be combined for downstream 
analysis.

Immune infiltration landscape between OA patients and 
healthy controls

In the OA group, Figure 2A depicts the distribution of “22 
immune cells,” with the macrophage cell population being in 
charge of the majority of the infiltrating immune cells. The 
“Correlation analysis” was performed between distinct immune 
cells to examine the correlation between the groups (Figure 2B). 
Among them, memory-activated CD4 T cells strongly correlated 
with other immune cell types, while neutrophils have the 
weakest correlation with other immune cell types. Violin plots 
showed that OA patients had a significantly larger quantity of 
plasma cells and resting mast cells, with a significantly smaller 
quantity of resting memory CD4 T cells and activated mast cells 
than the healthy control (Figure 2C).

Figure 1. Distribution of GSE55235 and GSE55457 Data 
Before and After Batch Correction. (A) Boxplot of GSE55235 
and GSE55457 Datasets Before Batch Correction; (B) Boxplot 
of GSE55235 and GSE55457 Datasets After Batch Correction; 
(C) PCA Plot of GSE55235 and GSE55457 Datasets Before 
Batch Correction; (D) PCA Plot of GSE55235 and GSE55457 
Datasets After Batch Correction.

Figure 2. Distribution of Immune Cell Infiltration in OA 
Samples. (A) Bar Chart of the Proportion of 22 Immune Cell 
Types According to the CIBERSORT Algorithm; (B) 
Correlation of 22 Immune Cell Types, Blue Indicates a 
Positive Correlation and Red Indicates a Negative Correlation; 
(C) Differential Expressed Immune Cell Types in the OA 
Versus Control Groups.
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regulation of protein phosphorylation, regulation of 
vasculature development, negative regulation of 
phosphorylation, and receptor-ligand activity (Figure 5A-B) 
(Table S1). The KEGG  enrichment results of the 122 genes 
are shown in Figure  5C-D.  The pathways enriched in the 
KEGG database  are mainly related to  “Kaposi sarcoma-
associated herpesvirus infection, IL-17 signaling pathway, 
TNF signaling pathway, NF-kappa B signaling pathway, and 
human cytomegalovirus infection” (Table 2).

and |log2 fold change|>2). Among them, the heatmap of the 
top 20 and the bottom 20 genes showed good separation of 
the two clusters (Figure 3B). All genes were visualized in a 
volcano plot and significant differential genes were 
highlighted, gray indicates unresponsive genes, blue indicates 
differential genes that are downregulated, and red indicates 
differential genes that are upregulated  (Figure 3C). 

WGCNA analysis based on immune-related subtypes
Next, we conducted WGCNA analysis based on immune 

cell subpopulations showing that genes from MEturquoise 
subpopulations were the most significant (Figure 4A-C). We 
then intersected genes from MEturquoise with DEGs 
calculated between cluster 1 and cluster 2, showing there are 
122 common intersection genes (Figure 4D).

Functional Enrichment Analysis
To learn more about the fundamental biochemical 

pathways and GO physiological functions of immune-related 
genes, functional enrichment screening was used. 
GO investigation revealed that 122 genes are critically related 
to the cell chemotaxis, collagen-containing extracellular 
matrix, regulation of inflammatory response, negative 

Figure 3. Consensus Clustering of Gene Expression Profiles 
Identifies Two Major Clusters. (A) Heatmap of Consensus Scores; 
(B) Heatmap of the Consensus Clustering Using the Top 20 and 
Bottom 20 Genes with the Most Differences; (C) The Volcano Plot 
of All the Genes Between OA Group and the Control Group; Red 
Represents Upregulated Genes, Blue Represents Downregulated 
Genes, and Gray Represents Stable Genes.

Figure 4. WGCNA Analysis Based on the Two Major 
Clusters. (A) Sample Dendrogram and Trait Heatmap; (B) 
Gene Dendrogram and Module Scores; (C) WGCNA 
Correlation With Clinical Variables; (D) Venn Diagram 
Showing the Common Genes for the MEturquoise Subgroups 
and Differential Genes.

Figure 5. GO and KEGG Enrichment Analysis. (A) GO 
Enrichment Analysis. The X-Axis Represents the Proportion 
of DEGs Enriched in GO Term, the Color of the Dot 
Represents the Corrected P-Value and the Length of the Axis 
Represents the Number of Enriched Genes; (B) GO 
Enrichment Analysis Network Diagram; (C) KEGG Pathway 
Enrichment Analysis. The X-Axis Represents the Proportion 
of DEGs Enriched in the KEGG Term, the Color of the Dot 
Represents the Corrected P-Value and the Length of the Axis 
Represents the Number of Enriched Genes; (D) KEGG 
Enrichment Analysis Network Diagram.

Table 2. KEGG Enrichment Result

ID Description P adjust q-value Count
hsa05167 Kaposi sarcoma-associated herpesvirus infection 1.19E-07 7.42E-08 14
hsa04657 IL-17 signaling pathway 8.75E-09 5.47E-09 12
hsa04668 TNF signaling pathway 3.55E-08 2.22E-08 12
hsa04064 NF-kappa B signaling pathway 1.19E-07 7.42E-08 11
hsa05163 Human cytomegalovirus 0.0001601 00001001 11
hsa04010 MAPK signaling pathway 0.0008603 0.0005382 11
hsa05323 Rheumatoid arthritis 4.59E-07 2.87E-07 10
hsa05166 Human T-cell leukemia virus 1 0.0005307 0.000332 10
hsa05224 Breast cancer 0.000177 0.0001107 9
hsa04062 Chemokine signaling pathway 0.0007887 0.0004935 9
hsa05169 Epstein-Barr virus infection 0.001045 0.0006538 9
hsa05417 Lipid and atherosclerosis 0.0015221 0.0009523 9
hsa05132 Saimonella infection 0.0029804 0.0018646 9
hsa04060 Cytokine-cytokine receptor interaction 0.0079814 0.0049933 9
hsa05210 Colorectal cancer 3.85E-05 2.41E-05 8
hsa04061 Viral protein interaction wth cytokine and cytokine receptor 0.0001044 6.53E-05 8
hsa04380 Osteoclast differentiation 0.0004151 0.0002597 8
hsa05418 Fluid shear stress and atheroscerosis 0.0005921 0.0003704 8
hsa05161 Hepatitis B 0.0012261 0.0007671 8
hsa04621 NOD-like receptor signaling path way 0.0022661 0.0014177 8
hsa05202 Transcriptional misregulation in cancer 0.0027121 0.0016967 8
hsa05207 Chemical carcinogenesis-receptor activation 0.0041093 0.0025708 8
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GSEA analysis revealed that pathways related to 
Reactome PD-1 signaling (Figure 6A), Reactome neutrophil 
degranulation (Figure 6B), Biocarta T-helper pathway (Figure 
6C), WP autosomal recessive osteopetrosis pathways (Figure 
6D), “Reactome TRAF6 mediated IRF7 activation in TLR7 8 
or 9 signalings” (Figure 6E), “Reactome TNF receptor 
superfamily TNFSF members mediating non  -canonical 
NF-kB pathway” (Figure 6F), “Reactome trafficking and 
processing of endosomal TLR” (Figure 6G), and “Reactome 
collagen chain trimerization” (Figure 6H) were significantly 
upregulated in cluster 1 (Table 3).

Analysis of the PPI Network
Hub nodes play an important role in the biological 

network, therefore, the PPI relationship of DEGs with 
different immune-related clusters of OA  patients was 
investigated. The full PPI network is shown in Figure 7A, 
with genes colored and classified according to the up and 
down levels (Figure 7B). The top 10 hub genes, such as 
CXCL8, JUN, ATF3, DUSP1, PTGS2, IL6, MMP9, FOS, 
NFKBIA, and MYC were determined by computing the 
MCC values (Figure 7C).

Integration of a random forest model based on immune 
cells and hub gene

Several decision trees are combined to create a Random 
Forest, which makes more precise predictions. The rationale 
is that numerous uncorrelated models (the individual 
decision trees) perform better together than they do 
individually. To further refine the immune-related genes, a 
“random forest model” was built based on OA patients, 
composed of the 22 immune cells (Figure 8A-B), showing 
that activated “NK cells, resting memory CD4 T cells, resting 
mast cells, activated mast cells, M0 macrophages, M1 
macrophages, plasma cells, and naïve B cells” are the crucial 
immunological cells associated with the pathogenesis of OA. 

Figure 6. GSEA  Enrichment Analysis of the Top Eight 
Pathways Showing that OA is Closely Related to PD-1 
Signaling (A), Neutrophil Degranulation (B), the Biocarta 
T-helper Pathway (C), Autosomal Recessive Osteopetrosis 
Pathways (D), TRAF6 Mediated IRF7 Activation in TLR7 8 
or 9 Signaling (E), TNF Receptor Superfamily TNFSF 
Members Mediating the Non-Canonical NF-kB Pathway (F), 
Trafficking and Processing of Endosomal TLR (G), and 
Collagen Chain Trimerization (H).

Table 3. GSEA Enrichment Result

Figure 7. Protein-Protein Interaction (PPI) Analysis. (A) PPI 
Network Analysis, Red Represents High Expression and Blue 
Represents Low Expression; (B)  Protein Cluster Analysis, 
Yellow or Pink Represent a Cluster; (C) Hub Genes Prediction, 
Red Represents the Hub Gene.

Figure 8. The Construction of an Immune Model Based on the 
Hub Gene and Immune Cells. (A–B) Random Forest Analysis 
Results Show that T cell and Master Cell Subgroups Account for 
a Large Proportion of Infiltrating Immune Cells; (C–R) The 
Correlation of Hub Genes and the Main Immune Cell Types.
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MYC. A minor chemokine from the C-X-C motif (CXC) 
family amongst them called CXCL8 promotes the release 
of inflammatory cytokines, thus further controlling the 
inflammatory process.52 The increased expression of CXCL8 
facilitates the activation and migration of human lymphocytes 
from vessels to the joint tissues via the CXC chemokine 
pathway. The JUN protein is a type of activated protein-1 (AP-
1) transcription complex that is intimately associated with 
the development of OA. The JNK/c-JUN pathway promoted 
chondrocyte apoptosis in an OA model induced by IL-1β53 and 
the homozygous genotype of FOS promoter single nucleotide 
polymorphisms (SNP) is associated with the susceptibility for 
knee OA.54

 Furthermore, during OA, the JNK-c-JUN pathway 
plays a role in the overexpression of Bim.55 Leucine zipper-
shaped activating transcription factor 3 (ATF3), a member 
of the ATF/CREB family of transcription factors, is quickly 
triggered by a string of harmful stress signals. By controlling 
the expression of inflammatory cytokines in chondrocytes, 
ATF3 is a crucial mediator in the formation and progression 
of OA; as a result, cytokines/NF-kB/Atf3 in chondrocytes 
may be a promising target for OA therapy.56

Among the ten hub nodes, dual specific phosphatase 1 
(DUSP1) regulates the transduction of MAPK, c-JUN, and 
MYC signal pathways via the dephosphorylation activity of 
threonine, serine, and tyrosine. In synovial biopsies taken from 
people with rheumatoid arthritis and osteoarthritis, DUSP1 is 
dysregulated,57 indicating its evolvement in the pathogenesis of 
OA. Downregulation of DUSP1 inactivates MAPK, p38, and 
JNK signals, leading to an increased expression of RANKL and 
severe bone destruction in patients with OA.58 Prostaglandin 
endoperoxide synthase 2 (PTGS2) is induced by extracellular 
stimuli to regulate inflammation and repress the expression 
of COX-2; Hip and knee OA are related to a reduced risk due 
to COX-2, which is linked to the decreased risk of hip and 
knee OA.59 TNF-α, MMP-2, MMP-8, and COX-2 expression 
increased in the IL-1-induced rat OA model, showing that 
PTGS2 mediates the expression of COX-2 and MMPs family 
proteins essential for the development of OA.60 The etiology 
of OA could also be linked to the higher production of MMP-
9 molecules.61 IL6 is a key proinflammatory cytokine and the 
most prominently elevated cytokine in the synovial fluid of 
OA individuals.62 IL-6 induced STAT3 and ERK1/2 signalling 
in a mouse OA model, and MMP-3 and MMP-13 levels were 
elevated for promoting chondrocyte apoptosis.63

IL-1β, which is an OA master regulator, stimulates the 
production of IL-6, which in turn causes the “initiation, 
phosphorylation, and DNA binding capability of c-FOS” 
(one of the main components of AP).64 For patients with 
OA, the high expression of FOS predicts high pain and 
inflammation.65 The NFKBIA gene encodes the IkBa protein 
in the NF-kB complex, and its SNP characteristics can help  
assess the risk of OA patients.66 The expression of c-MYC is 
positively correlated with chondrocyte apoptosis and cartilage 
destruction and is a hub gene for OA development.67,68 
These results revealed the importance of core genes in the 
development of OA, which is consistent with our data.

Figure 8C-R displays the relationship between the various 
hub genes and the key immunological cells, illuminating the 
superiority of the random forest model for OA-associated 
factor prediction.

DISCUSSION
For the projection of the responsiveness and 

pathophysiology of OA, it is crucial to comprehend the link 
between immune infiltration and fundamental genes. 
Infiltrated immune cells including macrophages, T and B cells, 
mast cells, plasma cells, natural killer cells, dendritic cells, and 
granulocytes were found inside the synovium of OA 
patients.41,42 Synovial swelling, subchondral bone sclerosis, and 
the development of osteophytes are all caused by the production 
of cytokines and chemokines by T lymphocytes, B lymphocytes, 
and macrophages that have invaded the articular cavity.43 
Although the inflammation caused by these immune cells is 
low-level and chronic, it causes serious joint damage, and its 
pathogenesis needs to be studied.

Macrophages are associated with the pathophysiology of 
OA, including cartilage breakdown, synovial inflammatory 
activities, and subchondral bone damage, as an essential 
effector cell in the initial stage of inflammatory destruction.17, 

44, 45 Up to 90% of patients with end-stage OA have a large 
number of macrophages infiltrating the synovium,46 
therefore macrophages are closely related to the pathogenesis 
of OA. Herein, we investigated infiltrated immune cell 
types in OA by exploring microarray data from the GEO 
database, demonstrating that the majority of immune 
cells that infiltrate OA are composed of the macrophage 
subpopulation. By secreting different inflammatory factors, 
macrophages played important role in the inflammatory 
disease and OA.47 For example, the inhibition of autophagy 
in macrophages promotes the release of mature IL-1β, which 
contributes to the occurrence of synovitis and OA.48 Advances 
in understanding macrophage recruitment and activation 
provide opportunities for OA therapies.

One of the major results of the study was that the pattern 
of gene expression in OA falls into two clear clusters, which 
have 122 common intersection genes mainly  enriched in 
“cell chemotaxis, collagen-containing extracellular matrix, 
regulation of inflammatory response, negative regulation 
of protein phosphorylation, regulation of vasculature 
development, negative regulation of phosphorylation, 
receptor-ligand activity, IL-17 signaling pathway, TNF 
signaling pathway, and NF-kappa B signaling pathway”. OA 
pathogenesis depends to a large extent on the imbalance of 
proinflammatory and anti-inflammatory mediators,49 and 
the activation of signaling pathways of NF-κB also activates 
other mechanisms that may promote OA progression. 
Similarly, the NF-κB signaling pathway may contribute to 
the occurrence of OA.50 IL-17 is involved in inducing and 
mediating proinflammatory responses and blocking the IL-
17 signaling pathway can delay OA-related pain.51 

Ten hub nodes were identified including CXCL8, JUN, 
ATF3, DUSP1, PTGS2, IL6, MMP9, FOS, NFKBIA, and 
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Finally, a random forest model was created using OA 
patients’ selection of a set of immune infiltrating cell types 
following additional examination of the 22 immune cell 
types. It is to be noted that, “activated NK cells, resting 
memory T cells CD4, resting mast cells, activated mast cells, 
M0 macrophages, M1 macrophages, plasma cells, and naïve B 
cells” are the main immune cells involved in OA. 16,67 These cell 
types correlated well with the hub genes indicating that the 
random forest model had remarkable power for predicting 
different clinical procedures.

Although high-throughput microarray data from the 
GEO databases were utilized to investigate the immune 
landscape of OA, the present study has some limitations. The 
entire study was conducted retrospectively, and the findings 
are derived from a single platform.  It is necessary to obtain 
data from different platforms, and functional experiments are 
to be performed to monitor the functions of these markers at 
the molecular level.

CONCLUSION
OA patients had a significantly larger quantity of plasma 

cells and resting mast cells than healthy controls. Pathway 
analysis showed that the genes related to OA specifically 
include “immune responses and immune-associated 
signaling pathways, such as the IL-17 signaling pathway 
and NF-kappa B signaling pathway”. In addition, a group of 
immune infiltrating cells related to OA was selected, which 
helped to understand the pathogenesis of OA.
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