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ABSTRACT
Context • Kidney renal clear-cell carcinoma (KIRC) is a 
malignant tumor. At an early stage, KIRC patients may experience 
only mild fever and fatigue or even no symptoms, and these early 
nonspecific indications can delay treatment. Neurotransmitters 
and their receptors may be very useful in determining 
tumorigenesis and predicting metastasis.
Objective • The study intended to investigate the predictive 
value of neurotransmitter receptor-related genes (NRRGs) using 
public KIRC data, by determining the biological processes that 
implicate the prognostic NRRGs and establishing a predictive 
NR-related risk model, to provide an empirical basis for 
identifying and treating KIRC patients.
Design • The research team performed a genetic case-control study.
Setting • The study took place at  Research Center of Health, Big 
Data Mining and Applications, Wannan Medical College, Wuhu, 
China. 
Methods • The research team: (1) obtained the transcriptome data 
related to KIRC from the Cancer Genome Atlas (TCGA) and 
ArrayExpress databases; (2) developed the differentially expressed 
NRRGs (DENRRGs) by identifying the NRRGs that intersected 
with DEGs in KIRC and normal samples; (3) carried out functional 
enrichment analyses of the DENRRGs; (4) screened the 
characteristic genes of the DENRRGs using machine learning; (5) 
created a predictive model using multivariate Cox analyses of the 
distinctive genes; (6) obtained independent prognostic factors for 
KIRC patients and established a nomograph model; (7)  
investigated the sensitivity of KIRC patients to therapeutic agents 
to examine the variations in immunological features between 
high-risk and low-risk individuals.
Results • Differential analysis found that 115 NRRGs intersected 
with 5275 DEGs to provide 52 DENRRGs. Functional enrichment 
showed that DENRRGs were mainly involved in signal  

transduction in the nervous system. The machine learning on the 
52 DENRRGs filtered out nine characteristic genes. Subsequently, 
the research team found eight prognostic biomarkers—histamine 
receptor H2 (HRH2), gamma-aminobutyric acid (GABA) receptor 
subunit epsilon (GABRE), cholinergic receptor nicotinic delta 
subunit (CHRND), glutamate receptor ionotropic subunit 2D 
(GRIN2D), glutamate metabotropic receptor 4 (GRM4), glycine 
receptor alpha 3 (GLRA3), cholinergic receptor nicotinic beta 4 
subunit (CHRNB4), and cholinergic receptor muscarinic-1 
(CHRM1)—and established a predictive model. Furthermore, the 
team precisely predicted the KIRC patients’ prognoses using a 
nomogram that combined their ages, risk scores, and M stages. 
The infiltration levels of 21 immune cells also significantly differed 
between the high-risk and low-risk groups, with neutrophils 
having a significant positive correlation with GABRE and HRH2 
and a significant negative correlation with CHRNB4 and GRM4. 
Finally, the 50% inhibitory concentration (IC50) values for various 
drugs, such as 5-aminoimidazole-4-carboxamide-1-β-D-
ribofuranoside (AICAR), 8-hydroxy-7-(6-sulfonaphthalen-2-yl)
diazenyl-quinoline-5-sulfonic acid (NSC-87877), Sunitinib, c-Jun 
N-terminal kinase (JNK) inhibitor VIII, and tanespimyci (X17.
AAG) were significantly lower for high-risk group. 
Conclusions • By studying the relevance of biomarkers to the 
immunological microenvironment of KIRC, the current research 
team was able to propose a new predictive model for KIRC based 
on NRRGs, to offer a novel viewpoint for investigating KIRC. 
The study’s results suggest new avenues for research into the 
pathophysiology and therapy of KIRC. Determining the precise 
molecular processes by which predictive biomarkers regulate 
KIRC requires further evidence and analysis. (Altern Ther Health 
Med. 2023;29(8):356-365).
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receptor H2 (HRH2), (2) glutamate metabotropic receptor 4 
(GRM4), (3) cholinergic receptor nicotinic beta 4 subunit 
(CHRNB4), (4) cholinergic receptor muscarinic-1 (CHRM1), 
(5) gamma-aminobutyric acid (GABA) receptor subunit 
epsilon (GABRE), (6) cholinergic receptor nicotinic delta 
subunit (CHRND), (7) glutamate receptor ionotropic subunit 
2D (GRIN2D), and (8) glycine receptor alpha 3 (GLRA3).

HRH2. Xie et al identified HRH2 as a dysregulated, 
epigenetic, protein-coding gene and found that it’s a 
prognostic biomarker.18

GRM4. Huang et al found that GRM4, a metabotropic 
glutamate receptor, can inhibit cyclic adenosine monophosphate 
(cAMP) production and protein kinase A (PKA) by negatively 
coupling to adenylyl cyclase.19 Bai reported that GRM4 is related 
to KIRC prognosis, but the specific mechanism remains unclear.20 

CHRNB4 and CHRM1. Meixner et al found that CHRNB4 
and CHRM1 are acetylcholine receptors in vascular remodeling 
in chronic, renal allograft injury.21 Other studies have found that 
CHRNB4 is involved in lung cancer22 and head and neck cancer,23 
while CHRM1 is involved in glioma24 and colon cancer.25 

GABRE. Although researchers have established little about 
its role in KIRC, some studies have linked GABRE to migraines, 
colon cancer, and non-small cell lung cancer (NSCLC).26-28 

CHRND. Some studies have found that CHRND, a gene 
encoding the muscle acetylcholine receptor, is associated 
with myasthenia,29 neuromuscular diseases,30 and head and 
neck squamous cell carcinomas (HNSCCs).31 

GRIN2D. Ferguson et al found that GRIN2D can 
stimulate intracellular calcium inflow.32 Moreover, Ferguson 
et al and other studies have found that GRIN2D is closely 
related to endothelial function, angiogenesis, and DNA 
methylation in tumors and acts as the biomarker for colorectal 
cancer, pancreatic ductal adenocarcinoma, liver cancer, and 
Parkinson’s disease.32-36 

GLRA3. Some studies have found that GLRA3 is a 
chloride channel gate and is involved in small-cell lung 
cancer,37 diabetic nephropathy,38 and leukemia.39

Inflammatory Cells
Roussel et al found that neutrophils, inflammatory cells 

in the tumor microenvironment, are crucial to the 
development of tumors,40 and Quan and Huang found that 
they have a close relationship with prognosis for KIRC.41 

Roussel et al and Cordeiro et al found that a prognostic 
factor for KIRC patients may be the neutrophil-to-lymphocyte 
ratio.40, 42 In addition, Shi et al detected a high expression of 
HRH2 in neutrophils of mouse intestinal tissue and found 
that HRH2 regulates the infiltration and differentiation of 
neutrophils for inflammation and colon-tumor sites.43

Current Study
The current study intended to investigate the predictive 

value of NRRGs using public KIRC data, by determining the 
biological processes that implicate the prognostic NRRGs and 
establishing a predictive NR-related risk model, to provide an 
empirical basis for identifying and treating KIRC patients.

Renal cell carcinoma (RCC) is one of the most cancerous 
tumors that can develop in the urinary tract.1 The most prevalent 
subtype of RCC, accounting for approximately 80%, is kidney 
renal clear cell carcinoma (KIRC).2 At an early stage, KIRC 
patients may experience only mild fever and fatigue or even no 
symptoms, but at a late stage, cystic degeneration, calcification, 
necrosis, and hemorrhage, contributing to lower back pain and 
hematuria, can significantly impair their quality of life (QoL).3,4 

Treatment
KIRC treatment still depends on surgery.3,5 However, 

metastasis causes a poor prognosis with around a third of KIRC 
patients experiencing metastasis at the time of diagnosis and 
25% developing metastases after therapy.2,6 Mining novel 
markers for prognostic prediction and individualized therapeutic 
strategies have important clinical implications in KIRC. 

Neurotransmitter Receptors (NRs)
Neurotransmitters, which peripheral and autonomic 

nerves secrete, regulate pathological and physiological 
functions by binding to their receptors.7 According to Jiang et 
al and Wang et al, cancer cells also produce and secrete 
neurotransmitters, and their receptors appear on nearly 
every surface of cancer cells.7, 8 Those researchers also found 
that the NR-mediated signaling pathways that regulate 
immune response are critical for carcinogenesis. 

Wang et al found that NRs are an essential nervous 
system component in the body’s physiological and 
pathological processes and that tumor cells broadly express 
NRs, which modulate the tumor microenvironment, 
angiogenesis, metastasis, and proliferation.8 Jiang et al and 
Schuller found that neurotransmitters and their receptors are 
closely related to cell proliferation, apoptosis, metastasis and 
cancer-related angiogenesis in non-small cell lung cancer, 
glioblastoma, pancreatic cancer and breast cancer.8-12  

In KIRC, Virginia et al showed that the beta 2-adrenergic 
receptor (ADRB2) regulated the inflammatory response and 
oxidative stress of KIRC cells.13 Tung et al found that antagonists 
targeting dopamine receptors (DRs) could inhibit the growth of 
KIRC cells.1 Lee et al found that the receptor of γ-aminobutyric 
acid (GABA) can act as a prognostic marker in KIRC.14 

By controlling the transmembrane transfer of water, urea, 
glycerol, and other ions, aquaporins may also influence the 
prognosis for KIRC.15The ionophore gramicidin A can disrupt 
the transmembrane potential of KIRC cells by making the cell 
membrane permeable to specific ions and is associated with 
angiogenesis, cell death and growth of KIRC.16, 17

Although the above few studies have demonstrated the 
critical function of NRs in KIRC development, extensive 
research on NRs’ prognostic significance in KIRC remains 
lacking. Thus, a comprehensive and systematic study of 
neurotransmitter receptor-related genes (NRRGs) in the 
prognosis of KIRC could be of great significance. 

Possible Predictive Biomarkers
Possible biomarkers in KIRC include: (1) histamine 



This article is protected by copyright. To share or copy this article, please visit copyright.com. Use ISSN#1078-6791. To subscribe, visit alternative-therapies.com

Zhang—Bioinformatic Analysis on the Prognostic Value of 
Neurotransmitter Receptor-Related Genes 

358   ALTERNATIVE THERAPIES, NOV/DEC 2023 VOL. 29 NO. 8

Evaluation and confirmation of prognostic model’s 
accuracy. Based on the median risk score, the research team: (1) 
categorized the patients with KIRC in the TCGA-KIRC dataset 
into high-risk and low-risk groups, with 261 patients each59; (2) 
compared the two groups’ survival rates using a Kaplan-Meier 
(K-M) analysis60; (3) plotted the predictive model’s receiver 
operator characteristic (ROC) curves using the survivalROC R 
tool60; and (4) assessed the distribution of the samples in the two 
groups using PCA. The team subsequently verified the prediction 
model’s reliability in an external validation set.

Development of the nomograph model. The research 
team: (1) used multifactorial and univariate Cox analyses for 
the TCGA-KIRC dataset to identify independent predictive 
variables for KIRC based on clinical features and risk scores61,62; 
(2) then combined components having independent predictive 
value to produce a nomogram model, and (3) determined the 
accuracy of the nomogram model through decision curve 
analysis (DCA), calibration curves, and ROC curves.60

The immune infiltration landscape. The research team: 
(1) determined the abundance of 28 immune cells in the 
samples from the TCGA-KIRC dataset, using single-sample 
gene set enrichment analysis (ssGSEA)63; (2) compared the 
distributions of immune cells in samples from different risk 
groups using the Wilcox.test and presented them in a box plot 
employing the R package ggplot2.64 The team used the ggplot2 
R software to develop a lollipop plot to show the association 
between biomarkers and differently infiltrating immune cells.64

Prediction of drug responsiveness. The research team: 
(1) applied the pRRophetic R package to determine the 50% 
inhibitory concentration (IC50) values for 138 drugs using 
samples from various risk groups from the Genomics of Drug 
Sensitivity in Cancer (GDSC) database65, 66; and (2) visualized 
them by plotting box plots with the R package ggplot2.67

RESULTS
DENRRGs and Signal Transduction

Through differential analysis, the research team screened 
5275 DEGs—2392 upregulated and 2883 downregulated—
from the normal and KIRC samples in the TCGA-KIRC 
dataset, using an adjusted P < .05 and a |log2fold change (FC)| 
>1 (Figures 1A and 1B). Based on the DEGs, the PCA 
analysis of the samples from the TCGA-KIRC dataset was 
able to create distinctions between the standard and KIRC 
samples (Figure 1C). Furthermore, the research team 
obtained 52 DENRRGs by creating the intersection between 
the 5275 DEGs of the normal and KIRC samples and 115 
NRRGs (Figure 1D). 

The GO analysis suggested that the DENRRGs had an 
important role in transmitting chemical synapses, postsynaptic 
excitability potentials, ions transport across membranes, 
neurological processes, and modulation of membrane potential 
(Figure 1E). The KEGG analysis suggested that the DENRRGs 
had an important role in creating interactions in neuroactive 
ligands with receptors, glutamatergic synapses, nicotine and 
morphine addiction, retrograde endocrine hormone signaling, 
and GABAergic synapses (Figure 1F).

METHODS
Procedures

The research team performed a genetic case-control 
study, which took place at  Research Center of Health, Big 
Data Mining and Applications, Wannan Medical College, 
Wuhu, China. 

Data collection. The research team obtained the KIRC-
related transcriptome data, which included 526 KIRC and 72 
normal reference samples, from the Cancer Genome Atlas 
(TCGA) database.44 Of these, 522 KIRC samples had complete 
survival and clinical information. The team included 101 
KIRC samples with unique survival data in an external 
validation set, the E-MTAB-1980 dataset, extracted from the 
ArrayExpress database,45 and then obtained 115 NRRGs 
from the available reports.8

Identification and functional enrichment analysis of 
differentially expressed NRRGs (DENRRGs). The research 
team extracted the differentially expressed genes (DEGs) for 
the normal and KIRC samples from the TCGA-KIRC 
platform using the limma R software package.46, 47 (Walter 
and Eliza Hall Institute of Medical Research, Melbourne, 
Victoria, Australia).

To demonstrate the filtering results, the team used the 
ggplot2 R tool, version 3.3.5, to construct a volcano plot48 and 
displayed the DEG expression on a heat map generated using 
the pheatmap R package, version 1.0.12.49 The team: (1) then 
estimated the distribution of the KIRC and normal samples 
using (PCA) analysis of samples from the TCGA-KIRC dataset 
based on the DEGs; (2) next obtained the DENRRGs by finding 
the intersection of DEGs and NRRGs using jvenn; (3) using the 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) platform,50 then examined the DENRRGs 
employing Gene Ontology (GO)51  and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analysis.52-54 analysis. 

Identification of predictive biomarkers. Random forest 
is a method of training a large number of survival trees and 
weighting the final prediction from the individual trees in the 
form of voting. The research team: (1) performed the random 
forest analysis using RandomForestSRC package’s55 
(University of Miami, Florida, USA). rfsrc function to 
acquire prognosis-related genes based on DENRRGs and 
survival information in the TCGA-KIRC database56; (2) 
identified the importance ranking of each gene by setting 
parameters—ntree = 1000 and “na.action = na.impute; and 
(3) filtered the candidate prognostic genes according to an 
importance threshold importance of >0.3. 

The team also performed a “least absolute shrinkage and 
selection operator” (LASSO) analysis on the DENRRGs 
using the glmnet package in the R software, version 4.0-2, to 
identify the prognosis-related genes.57 The team: (1) used the 
intersection identifying the prognosis-related genes, as 
obtained from the above two algorithms, to acquire the 
characteristic genes, and (2) performed a multivariate 
stepwise Cox analysis of the distinct genes using the step 
function, and (3) obtained the predictive biomarkers by 
setting the parameter to direction = both.58
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min=0.03550206), including: (1) GABA receptor subunit 
delta (GABRD), (2) HRH2, (3) GABRE, (4) CHRND, (5) 
GABA type A receptor subunit theta (GABRQ), (6) DRD4, 
(7) GRIN2D, (8) GRM4, (9) adrenoceptor alpha 1D 
(ADRA1D), (10) GLRA3, (11) GABA type A receptor 
subunit beta3 (GABRB3), (12) CHRNB4, (13) CHRM1, (14) 
GABA A receptor, subunit gamma 3 (GABRG3), (15) GABA 
type A receptor subunit Pi (GABRP), and (16) glutamate 
metabotropic receptor 1 (GRM1). 

Then, the team obtained the nine characteristic genes—
GRIN2D, DRD4, GABRE, CHRNB4, CHRND, CHRM1, 

Predictive Biomarkers
Figures 2A and 2B show the random forest survival 

analysis of DENRRGs in the TCGA-KIRC dataset, which 
yielded 12 prognosis-related genes: (1) GRIN2D, (2) 
dopamine receptor D4 (DRD4), (3) GABRE, (4) CHRNB4, 
(5) CHRND, (6) 5-hydroxytryptamine receptor 3D (HTR3D), 
(7) CHRM1, (8) HRH2, (9) GRM4, (10) cholinergic receptor 
nicotinic gamma subunit (CHRNG), (11) GLRA3, and (12) 
cholinergic receptor nicotinic alpha 1 subunit (CHRNA1). 

Figures 2C and 2D  show the LASSO regression analysis, 
which revealed 16 prognosis-related genes (lambda.

Figure 1. Identification and Analysis of the DEGs Between the 
Normal and KIRC Samples in the TCGA-KIRC Dataset. 
Figures 1A and 1B show a volcano plot and heatmap, 
respectively, of the 5275 DEGs with |log2fold change (FC)| >1 
and adj. P < .05. Figure 1C shows the PCA for the TCGA-KIRC 
cohorts according to the expression of DEGs. Figure 1D shows 
the Venn diagram of the 52 DENRRGs. Figure 1E shows the 
most enriched GO terms of the 52 DENRRGs. Figure 1F 
shows the mainly enriched KEGG pathways of 52 DENRRGs.

Abbreviations: DEGs, differentially expressed genes; DENRRGs, 
differentially expressed NRRGs; GO, gene ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; KIRC, kidney renal clear cell 
carcinoma; NRRGs, neurotransmitter receptor-related genes; PCA, principal 
component analysis; TCGA, The Cancer Genome Atlas. 

Figure 2. Screening for the Prognostic Biomarkers. Figure 
2A shows the random forest survival analysis for the 
DENRRGs. Figure 2B shows the 12 genes identified as 
prognosis-related genes with a relative variable importance of 
>0.3. Figure 2C shows the 16 prognosis-related genes selected 
using the LASSO Cox models. Figure 2D shows the cross-
validation for the tuning parameter selection in the LASSO 
model. Figure 2E shows the Venn diagram of nine 
characteristic genes through two algorithms. Figure 2F shows 
the multivariate stepwise Cox analysis to identify the 
prognostic biomarkers based on the distinct genes. 

Abbreviations: DENRRGs, differentially expressed NRRGs; LASSO, least 
absolute shrinkage and selection operator.
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the prognosis of KIRC patients at years 1, 3, and 5 (Figure 
4E). The data from the DCA curves showed that the 
nomogram model provided better therapeutic value than 
other independent predictive indicators (Figure 4F).

Biomarkers and Immune Cells
Because the prognosis of tumors was intimately 

interrelated to the immune microenvironment, the research 

HRH2, GRM4, and GLRA3—by determining the intersection 
of the 12 prognosis-related genes from the random forest 
survival analysis and the 16 prognosis-related genes obtained 
from the LASSO regression analysis (Figure 2E). 

The team then constructed and used the predictive 
model, finding eight predictive biomarkers—HRH2, GABRE, 
CHRND, GRIN2D, GRM4, GLRA3, CHRNB4, and 
CHRM1—using a multifactorial Cox regression analysis of 
the nine characteristic genes (Figure 2F).

Reliability of Prognostic Model 
The KIRC patients were divided into the high- and low-

risk score groups based on the medium value of the risk score 
(0.963915812) (Figure 3A). The expression of HRH2 and 
CHRM1 was lower in the high-risk group, while the 
expression of  GABRE, CHRND, GRIN2D, GRM4, GLRA3, 
and CHRNB4 was higher than that of the low-risk group 
(Figure 3B).

Figure 3C shows that the survival duration for the high-
risk group was significantly lower than that of the low-risk 
group (P < .000s1). The risk score was a reliable predictor of 
patients’ survival; the AUCs for the KIRC patients’ risk scores 
were 0.747, 0.69, and 0.737 for survival for 1, 3, and 5 years, 
respectively. (Figure 3D). Thus, the PCA analysis using 
biomarkers may adequately characterize the samples’ 
distribution (Figure 3E).

The research team then used the external validation set 
to verify the predictive model’s accuracy. KIRC patients with 
the survival status of “Dead” were predominantly seen in the  
high-risk group (Figure 3F). HRH2 and CHRM1 expression 
was lower in the high-risk group than in the low-risk group, 
while the rest of the biomarkers were the reverse (Figure 3G). 

Figure 3H shows that the high-risk group’s survival 
probability, according to the K-M survival curves analysis, 
was significantly lower than that of the low-risk group  
(P = .01). AUCs of 0.755, 0.662, and 0.709 for the risk scores 
predicting survival at 1, 3, and 5 years for KIRC patients, 
respectively, indicated that the risk score could accurately 
predict patients’ survival in the external validation set 
(Figure 3I). The PCA analysis based on biomarkers also 
could accurately describe the distribution of samples in the 
external validation set (Figure 3J).
 
Nomogram Model

Age (P < .001), risk score (P < .001), tumor stage  
(P < .001), histological neoplasm grade (P < .001), M stage  
(P < .001), T stage (P < .001), and N stage (P < .001) were all 
associated with KIRC patients’ survival in the TCGA-KIRC 
dataset, as determined using univariate Cox analysis (Figure 
4A). Figure 4B shows the independent prognostic value of M 
stage (P = .032), age (P = .019), and risk score (P < .001), 
identified using multifactorial Cox analysis.

Estimating KIRC patients’ prognosis reliably was 
possible by fusing the M stage, age, and risk score to create a 
nomogram model (Figures 4C and 4D). The ROC curves 
indicated that the nomogram model could accurately predict 

Figure 3. Construction and Assessment of the Predictive 
Model in KIRC. Figure 3A shows the distribution of the risk 
scores and survival statuses of KIRC patients for the two risk 
groups, stratified by the predictive model in the TCGA-KIRC 
cohorts. Figure 3B shows the gene expression heatmap of the 
prognostic biomarkers between for the two risk groups. Figure 
3C shows the K-M survival analysis of the two risk groups in 
the TCGA-KIRC cohorts (P < .0001). Figure 3D shows the 
ROC curves for the predictive accuracy of the prognostic 
model in the TCGA-KIRC cohorts. Figure 3E shows the PCA 
plot between the high- and low-risk groups in the TCGA-
KIRC cohorts. Figure 3F shows the distribution of the risk 
scores and survival statuses of KIRC patients for the two risk 
groups, stratified by the predictive model in the E-MTAB-1980 
dataset. Figure 3G shows the gene expression heatmap of 
prognostic biomarkers between the two risk groups in the 
E-MTAB-1980 dataset. Figure 3H shows the K-M survival 
analysis of the two risk groups in the E-MTAB-1980 dataset 
(p=0.01). Figure 3I shows the ROC curves for the predictive 
accuracy of the prognostic model in the E-MTAB-1980 
dataset. Figure 3J shows the PCA plot between the high- and 
low-risk groups in the E-MTAB-1980 dataset.

Note: Figure 3C P < .0001, indicating that survival duration for the high-risk 
group was significantly lower than that of the low-risk group, Figure 3H P = 
.01, indicating that survival probability for the high-risk group was 
significantly lower than that of the low-risk group

Abbreviations: K-M, Kaplan-Meier; KIRC, kidney renal clear cell carcinoma; 
PCA, principal component analysis; ROC, receiver operator characteristic; 
TCGA, The Cancer Genome Atlas. 
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team also researched the relationship of the prognosis 
biomarkers and the immune microenvironment in KIRC. 
Figure 5A shows that the concentration of 21 immune cells 
in the TCGA-KIRC dataset was significantly different 
between the high- and low-risk groups (P < .05).

In addition, the team further investigated the relevance 
of the prognostic biomarkers to the differential immune cells. 
The neutrophil, the activated CD4 T cell, the type 2 T helper 
cell, the central memory CD4 T cell, the  memory B cell, the 
central memory CD8 T cell, MDSC, macrophage etc., had 
the most significant correlations with biomarkers. 

The neutrophil was significantly positively correlated 
with GABRE (P < .0001, cor = 0.174) and HRH2 (P < .0001, 
cor = 0.256) and negatively correlated with CHRNB4  

Figure 4. Establishment and Assessment of the Nomogram 
Based on the Risk Score. Figures 4A and 4B show the 
univariate and multivariate Cox regression analyses, which 
confirmed that the risk score could be an independent 
prognostic factor affecting the prognosis of KIRC patients. 
Figure 4C shows the nomogram combining risk score and 
other clinicopathological parameters, which was developed 
to predict 1-, 3-, and 5-year survival. Figure 4D shows the 
calibration curves of the nomogram. Figure 4E shows the 
ROC curve of the nomogram for survival prediction. Figure 
4F shows the DCA of the 1-, 3-, and 5-year survival in the 
TCGA-KIRC dataset.

Note: Figure 4A P < .001, indicating that age, risk score, tumor stage, 
histological neoplasm grade, M stage, T stage, and N stage were all associated 
with KIRC patients’ survival, as determined using univariate Cox analysis. 
Figure 4B P < .001, indicating that age, risk score, and M stage had significant 
independent prognostic value as determined using multifactorial Cox analysis

Abbreviations: DCA, decision curve analysis; KIRC, kidney renal clear cell 
carcinoma; ROC, receiver operator characteristic; TCGA, The Cancer 
Genome Atlas.

Figure 5. Immune-related Analyses for the Correlation of 
Risk Score and Immune Cells. Figure 5A shows the boxplot 
for the contents of 21 immune cells between the different risk 
groups in the TCGA-KIRC dataset’s Lollipop Chart for the 
correlation of the significantly different immune cells, Figure 
5B shows the CHRM1, Figure 5C the CHRNB4, Figure 5D 
the CHRND, Figure 5E the GABRE, Figure 5F the GLRA3, 
Figure 5G the GRIN2D, Figure 5H the GRM4, and Figure 5I 
the HRH2. 

*P < .05, indicating that the type 2 T helper cell was significantly negatively 
correlated with CHRND
****P < .0001, indicating that the neutrophil was significantly positively 
correlated with GABRE and HRH2 and significantly negatively correlated 
with CHRNB4 and GRM4; that the activated CD4 T cell was significantly 
positively correlated with GRM4 and GLRA3; and that the type 2 T helper 
cell was significantly negatively correlated with CHRM1 

Abbreviations: CD, cluster of differentiation; CHRM1, cholinergic receptor 
muscarinic-1; CHRNB4, cholinergic receptor nicotinic beta 4 subunit; 
CHRND, cholinergic receptor nicotinic delta subunit; GABRE, gamma-
aminobutyric acid receptor subunit epsilon; GLRA3, glycine receptor alpha 
3; GRIN2D, GluN2D subunit protein; GRM4, glutamate metabotropic 
receptor 4; HRH2, histamine receptor H2; KIRC, kidney renal clear cell 
carcinoma; MDSC, myeloid-derived suppressor cells; TCGA, The Cancer 
Genome Atlas.
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KIRC based on NRRGs, to offer a novel viewpoint for 
investigating KIRC. The study’s results suggest new avenues 
for research into the pathophysiology and therapy of KIRC. 
Determining the precise molecular processes by which 
predictive biomarkers regulate KIRC requires further 
evidence and analysis. 
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INTRODUCTION
Ovarian cancer is a malignant tumor caused by ovarian 

cell differentiation, a common disease in female reproductive 

system tumors. The onset of ovarian cancer is the most 
frequent between 50 and 70 years, but about 10 percent of 
patients diagnosed are under the age of 50 years.1,2 In 
particular, most asymptomatic patients are diagnosed at an 
advanced stage, implying that ovarian cancer is associated 
with poor prognosis and there is an increasing trend of the 
incidence of ovarian cancer each year.3,4 At present, existing 
immunotherapy for ovarian cancer is not perfect and 
therefore, it is necessary to provide new ideas for the clinical 
treatment of ovarian cancer.

Studies have attempted to unravel the mechanism 
underlying the onset and progression of tumor formation. 
Tumor-associated macrophages (TAMs) act as a crucial role in 
the development of tumors. As soon as tumor cells take the 

ABSTRACT
Background • Ovarian cancer is the leading cause of 
death linked to gynecological cancers. Notch1, as an 
important component of Notch signaling, plays an 
important role in a variety of cancers. This study aims to 
discuss the mechanisms through which Notch 1 influences 
the development of ovarian cancer. 
Methods • To design and establish the short hairpin (sh) 
RNA for targeting Notch 1, we transfected THP-1 cells (one 
of the human macrophagic lines). The cells were divided 
into shRNA negative control (NC) group and the Notch 1 
shRNA group. The CoC1 cells and THP-1 cells (human 
mononuclear macrophages) are co-cultured, which are 
injected into the nude mice subcutaneously based on 
proposition. The sizes of tumors and their volumes are 
observed through HE staining. Flow cytometry is used to 
sort out macrophages from subcutaneous tumors of nude 
mice, whose protein-related expression is detected through 
western blot. Then the NC group and the Notch 1 shRNA 
group in the co-culture system are treated with PI3K/
mTOR Inhibitor-13 sodium (200 nM) for 48h and then 
co-cultured with human endothelial cell lines HUVEC, 
CoC1, and THP-1 to test the tube-forming capacity of 
HUVEC cells in each group to detect the protein-related 
expression in THP-1 cells using western blot.
Results • It is seen that the Notch 1 shRNA group includes  

a significantly larger tumor size, decreased relative 
expression, and the obvious increase of the relative protein 
expression in p-PI3K, p-mTOR, HIF1α, and VEGF 
compared with the NC group. Through tube-forming 
experiments, the Notch1 shRNA group significantly 
increased the number of HUVEC tubes. However, after 
the use of PI3K/mTOR Inhibitor-13 sodium, the number 
of tubes decreased in the NC and Notch1 shRNA groups, 
and there is no significant discrepancy in comparison to 
the NC group. The in vitro western blotting results indicate 
no obvious variation of Notch 1’s relative protein 
expression in both the NC group and Notch 1 shRNA 
group after the use of PI3K/mTOR Inhibitor-13 sodium, 
while the relative protein expression of p-PI3K, p-mTOR, 
HIF1α, and VEGF was significantly reduced and there was 
no significant difference. 
Conclusion • This study found that specific knockout of 
Notch 1 in tumor-associated macrophages will promote 
the activation of the PI3K/mTOR signaling pathway and 
the expression of HIF1α and VEGF, thus promoting 
angiogenesis and the development of ovarian cancer. 
Thus, this study provides insight into novel prognostic 
biomarkers and therapeutic targets for the treatment and 
research of ovarian cancer. (Altern Ther Health Med. 
2023;29(8):364-369).
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lead in the tumor microenvironment, tumor-related 
macrophages are activated and are involved in various stages of 
cancer progression.5 Some present studies have already found 
that blocking the Notch signaling pathway promotes tumor 
growth in osteosarcoma by affecting the polarization of TAM 
to the M2 phenotype (anti-inflammatory macrophage).6

Notch 1 signaling pathway (an impressive cell signaling 
pathway) is involved in tumorigenesis including cervical, colon, 
head and neck, lung, and kidney cancers, as well as pancreatic 
and breast cancers.7,8 Besides, it makes an impetus on regulating 
cell proliferation, differentiation, apoptosis as well as other life 
processes, 9,10 similar to mTOR signaling pathway which 
regulates cellular metabolism, proliferation, growth, and 
survival. It has been attested that aberrant activation of Notch 1 
and mechanistic Target of Rapamycin (mTOR) signaling 
pathways are relevant to many kinds of cancers including 
ovarian cancer.11,12 In recent years, researchers have shown that 
there is an interaction between mTOR signals and Notch 1 
which affects the activity of the mTOR pathway by regulating 
Protein kinase B (PKB or AKT) and phosphatidylinositol 
3-kinase (PI3K) pathways.13,14 and this has a profound impact on 
tumor differentiation, metastasis, and treatment.15

Therefore, we hypothesize that if Notch 1 in tumor-
associated macrophages is targeted silencing, the expression 
of related proteins in the mTOR signaling pathway, as well as 
HIF1α and VEGF, are affected, affecting angiogenesis and 
ovarian cancer development. All in all, we demonstrate that 
specific knockdown of Notch 1 activates the mTOR signaling 
pathway in tumor-associated macrophages to promote the 
expression of vascular endothelial growth factor (VEGF) and 
hypoxia-inducible factor 1α (HIF1α) and stimulate ovarian 
cancer development. 

METHODS 
Cell culture

Human-derived macrophages THP-1, ovarian cancer 
cells CoC1, and human endothelial cells HUVEC from 
Wuhan, China are cultured in RPMI 1640 complete medium 
containing 10 percent fetal bovine serum and 1 percent DAB 
(100 U/mL penicillin and 100 μg/mL streptomycin). All of 
them are cultured in a constant temperature incubator with 
5% CO2 at 37°C. Subcultures are prepared when the cell 
confluence reached 80%.

Cell transfection
Notch 1 scrambled negative control short hairpin (sh) 

RNA (shRNA NC) and Notch1 interfering (Notch1 shRNA) 
sequences are synthesized by GeneTech (Shanghai) Company 
Limited. Primer sequences are shown in Table 1.

For formulating double strands after annealing, the 
sequences of shRNA negative control (NC) or Notch 1 shRNA 

are cloned into PLVX-shRNA2 predigested with ExoRI and 
BamHI. The method to transfect shRNA (2 μg) and PLVX 
vector is to inoculate the THP-1 cell line at the logarithmic 
growth phase into 24-well plates to adapt the cell density to 
4×105 pcs/well. Then based on the manufacturer’s instructions, 
Lipofectamine 2000 transfection (Invitrogen; Thermo Fisher 
Scientific) reagent is used to transfect the plasmid into the 
THP-1 cell line. Eight hours after transfecting, the cells are 
incubated at 37°C with 5% CO2, using RPMI 1640 medium 
covering 30% ampicillin (1 μg/ml) for transfection. They are 
incubated in the same environment. After 48 h, the medium is 
changed for subsequent experiments.

Cell co-culture
CoC1 and HUVEC cells are seeded into transwell chambers 

and cultured with THP-1 seeded in 24-well plates. After 
overnight incubation, the medium of the transwell cells and 
culture plate is removed and new cells are added to the lower 
cells. Transwell cells are placed in the cell culture plates with a 
new culture medium, and subsequently tested after 48 hours. 
Remove the transwell chamber and aspirate the culture medium 
from the cell culture plate. The cell culture plate is washed twice 
with PBS and the cells are fixed with 4% paraformaldehyde.

Subcutaneous tumorigenesis experiment in nude mice
In tumorigenesis experiments, CoC1 cells and THP-1 

cells after co-culture are injected subcutaneously in each 
nude mouse into either side of the back of (five-week-old 
female BALB/c nude mice from Cyagen Biosciences Inc.) in 
proportion. Tumor size is then tested by measuring the 
length (L) and width (W) of the tumor with calipers every 3 
days, and tumor volume (V) is estimated using the formula 
V = 1/2 × L × W.

HE staining
Paraffin sections made from the tumor of nude mice are 

fully immersed into the dewaxing agent three times and for 
30 m each time and dipped in gradient ethanol with 
concentrations of 100%, 95%, 80%, and 70% for three 
minutes. After a five-minute soak in hematoxylin solution, 
the slices are washed in flowing water. Upon differentiation 
for tens of seconds in 1% hydrochloric acid alcohol, we 
observe whether the blue cytoplasm sections have disappeared 
under the microscope and then wash them with running 
water to terminate differentiation. The sections are washed 
with running water after 1% ammonia water is used to turn 
blue for tens of seconds until the nuclei become blue and dip 
them in eosin solution for 30 seconds along with rinsing the 
slices with running water. In the end, we dehydrate, make 
transparent, and seal the slices with environmentally friendly 
gum.

Table 1. Primer Sequences

Notch1-shRNA Forward 5'-GATCCCCAACATCCAGGACAACATTTCAAGAGAATGTTGTCCTGGATGTTGGTTTTTTCTCGAGG-3'
Reverse 5'-AATTCCTCGAGAAAAAACCAACATCCAGGACAACATTCTCTTGAAATGTTGTCCTGGATGTGTGGG-3'

shRNA NC Forward 5'-GATCCTTCTCCGAACGTGTCACGTTTCAAGAGAACGTGACACGTCGGAGAATTTTTTCGAGG-3'
Reverse 5'-AATTCCTCGAGAAAAAAATTCTCCGAACGTGTCACGTTCTCTTGAAACGTGACACGTCGGAGAG-3'


