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INTRODUCTION
Glioblastoma is a World Health Organization grade IV 

glioma, the most common and invasive primary malignant 
brain tumor globally, accounting for approximately 60% to 

70% of malignant gliomas.1 Despite the progress made in the 
past decade, glioblastoma is still one of the most difficult 
tumor types to treat. The median survival time of patients 
with glioblastoma is only 12 to 15 months.2 Therefore, it is 
important to study the molecular mechanisms related to 
glioblastoma. Recently, tumor-targeted molecular therapy 
has been used to supplement conventional therapy in 
different cancer types.3 Compared with conventional 
chemotherapy, molecular therapy attacks malignant tumor 
cells more specifically with fewer side effects.4 

It is imperative to develop prognostic biomarkers to 
closely monitor disease progression and shed light on 
treatment stratification. Differentially expressed genes 
(DEGs) can be used to accurately estimate the overall 
survival (OS) rate of a disease and are potential markers for 
clinical treatment.5,6 Recently, studies have shown that 
models constructed using data from the expression of 

ABSTRACT
Objective • Glioblastoma is the most common and aggressive 
type of the central nervous system cancers. Although 
radiotherapy and chemotherapy are used in the treatment of 
glioblastoma, survival rates remain unsatisfactory. This study 
aimed to explore differentially expressed genes (DEGs) based 
on the survival prognosis of patients with glioblastoma and to 
establish a model for classifying patients into different risk 
groups for overall survival. 
Methods • DEGs from 160 tumor samples from patients 
with glioblastoma and 5 nontumor samples from other 
patients in The Cancer Genome Atlas database were 
identified. Functional enrichment analysis and a protein-
protein interaction network were used to analyze the 
DEGs. The prognostic DEGs were identified by univariate 
Cox regression analysis. We split patient data from The 
Cancer Genome Atlas database into a high-risk group and 
a low-risk group as the training data set. Least absolute 
shrinkage and selection operator and multiple Cox 
regression were used to construct a prognostic risk model, 
which was validated in a test data set from The Cancer 
Genome Atlas database and was analyzed using external 
data sets from the Chinese Glioma Genome Atlas database  

and the GSE74187 and GSE83300 data sets. Furthermore, 
we constructed and validated a nomogram to predict 
survival of patients with glioblastoma. 
Results • A total of 3572 prognostic DEGs were identified. 
Functional analysis indicated that these DEGs were mainly 
involved in the cell cycle and focal adhesion. Least absolute 
shrinkage and selection operator regression identified 3 
prognostic DEGs (EFEMP2, PTPRN, and POM121L9P), 
and we constructed a prognostic risk model. The receiver 
operating characteristic curve analysis showed that the 
areas under the curve were 0.83 for the training data set and 
0.756 for the test data set. The predictive performance of the 
prognostic risk model was validated in the 3 external data 
sets. The nomogram showed that the prognostic risk model 
was reliable and that the accuracy of predicting survival in 
each patient was high.
Conclusion • The prognostic risk model can effectively 
classify patients with glioblastoma into high-risk and low-
risk groups in terms of overall survival rate, which may 
help select high-risk patients with glioblastoma for more 
intensive treatment. (Altern Ther Health Med. 
2025;31(1):401-407).
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coefficients and constructed a prognostic risk model that 
separated the high-risk group and low-risk group. 

Risk scores were established in accordance with the 
LASSO regression coefficient, and the risk-score formula was 
constructed as follows:

risk score = ∑ (Expn × COFFn)
I

n = 1

In the formula, I is the number of selected genes, Expn is the 
expression value of each gene, and COFFn is the LASSO 
regression coefficient.

Clinical relevance was validated using survival analysis 
between groups using the survival and survminer packages 
of R; receiver operating characteristic (ROC) analysis was 
performed using the survival ROC package of R, and the area 
under the curve (AUC) was calculated at multiple time 
points to evaluate discrimination.

Clinical characteristics and pathological features, 
including age, sex, isocitrate dehydrogenase status, the 
promoter methylation status of the O-6-methylguanine-
DNA methyltransferase gene, and Karnofsky performance 
scale scores, were collected from the TCGA database and 
integrated with transcriptome profile data derived from the 
TCGA database. 

A multivariate proportional hazards model (Cox) 
regression analysis was performed using clinical data and 
risk scores to demonstrate that the prognostic value of risk 
scores was the independent prognostic risk factor. P < .05 
was considered statistically significant.

External validation of the prognostic risk model
The prognostic risk model with the same risk-score 

formula and cutoff value to separate the high-risk and low-risk 
groups was validated in the test data set and external data set 
from the CGGA database (n = 374), GSE74187 data set (n = 60), 
and GSE83300 data set (n = 50). Likewise, the prognostic risk 
model was presented as a risk plot for each data set that 
encompassed the expression level of the included genes, the 
distribution of risk scores, and the survival status of individuals.

Construction of a nomogram based on the prognostic 
risk model

A nomogram was constructed for the risk scores based 
on the expression of the prognostic risk model and 
clinicopathological factors by using the rms package in R. 
Discrimination of the nomogram was validated using the 
ROC package in R to analyze the data at 1-year and 2-year 
follow-up, and predictive accuracy was tested by presenting 
the difference between predicted survival and actual survival 
using a calibration plot.

RESULTS 
Screening for DEGs and functional analysis

We identified 3572 DEGs from the TCGA database. The 
DEGs comprised 2571 upregulated genes and 956 

multiple genes can better predict and classify the survival 
outcomes of patients with glioblastoma.7,8 Nevertheless, these 
models have not been used in routine clinical practice, which 
may be related to a lack of consistent evidence, small sample 
sizes, and the large amount of data fitting present in these 
studies. Therefore, the most reliable biomarkers to predict 
and classify the prognosis of glioblastoma have the possibility 
of being identified using publicly accessible databases of gene 
expression patterns, such as The Cancer Genome Atlas 
(TCGA), the Chinese Glioma Genome Atlas (CGGA), and 
the Gene Expression Omnibus.

In this study, we collected gene expression matrixes from 
the TCGA, CGGA, and Gene Expression Omnibus databases 
to investigate the clinical implications of DEGs on prognostic 
stratification and their potential as biomarkers for targeted 
glioblastoma therapy. We further established a 3-gene 
prognostic risk model to divide glioblastomas into 2 groups 
based on risk. The high-risk group had shorter OS than the 
low-risk group and showed different molecular features. The 
prognostic risk model was developed and validated in 
independent data sets, and underlying mechanisms were 
explored using bioinformatics analysis.

METHODS
Data source

The data used in this study were normalized RNA-
sequencing data sets and corresponding clinical information 
from 160 tumor samples from patients with glioblastoma and 
5 nontumor samples from other patients in the TCGA 
database, 374 patients with glioblastoma in the CGGA 
database, 60 patients with glioblastoma in the GSE74187 data 
set, and 50 patients with glioblastoma in the GSE83300 data 
set.

Data preprocessing and differential analysis
DEGs between glioblastoma tumor samples and normal 

tissues were identified using the Wilcoxon test after within-
array replicate probes were replaced with their mean via the 
limma package of R version 3.6.1 (R Foundation for Statistical 
Computing).9,10 The P value was adjusted using the false 
discovery rate. False discovery rate less than .05 and |log2 
(fold change)| greater than 2 were considered significant.

The Kyoto Encyclopedia of Genes and Genomes 
(KEGG)11 pathway enrichment gene ontology12 function was 
analyzed with the prognostic DEGs using the clusterProfiler 
package of R.13 P < .05 was considered statistically significant.

Development and validation of a prognostic risk model
Patients from the TCGA data set were randomly assigned 

in a 5:5 ratio to a training data set and a test data set. Using 
the expression profiles of the identified prognostic DEGs, we 
conducted least absolute shrinkage and selection operator 
(LASSO) regression analysis in the training data set. The 
Akaike information criterion value was used for further 
analysis by multivariate Cox regression with LASSO penalty. 
Subsequently, we calculated individual risk scores with 
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downregulated genes, using the criterion of |log2 (fold 
change)| greater than 2. The top 3 upregulated genes were 
PRAME, ELDR, and HOXD9, and the top 3 downregulated 
genes were NEUROD6, PRKCG, and C1QL3 (Figure 1A).

We annotated the functions of the DEGs using KEGG 
enrichment pathway analysis. The results indicated that the 
DEGs were enriched in focal adhesion, cell cycle, cell 
adhesion molecules, and extracellular matrix–receptor 
interaction (P < .05; Figure 1B). Furthermore, gene ontology 
enrichment analysis for biological processes also 
demonstrated that the DEGs were mainly enriched in 
leukocyte migration, signal release, and regulation of 
exocytosis, regulation of ion transmembrane transport, and 
neurotransmitter transport (Figure 1C). 

Construction of a prognostic model in the training data set
DEGs, which are closely related to tumor initiation and 

progression, are potential prognostic biomarkers. To identify 
potential prognostic DEGs, the TCGA cohort was randomly 
divided into a training data set (n = 80) and an internal test 
data set (n = 80) with an approximate ratio of 1:1. A univariate 
Cox regression analysis was used to screen out the prognostic 
DEGs that were related to OS, and 270 prognostic DEGs were 
identified. The complex protein-protein interaction network 
of these prognostic DEGs consisted of 41 nodes and 116 
edges. We used the MCODE (Molecular Complex Detection) 
plug-in of Cytoscape software version 3.9.1 (Cytoscape 
Consortium) to conduct a module analysis of the network. 
We found 2 modules in the protein-protein interaction 
network. The first module, composed of 13 nodes that 
interacted most intensively, the cluster’s computed score was 
3.15 (Figure S1).

From the 270 prognostic DEGs, 7 survival-related genes 
were identified by LASSO penalized regression (Figure 2A 
and 2B, Table 1). Then, we screened these 7 genes with the 
minimum Akaike information criterion value and constructed 
a prognostic risk model composed of 3 potential prognostic 
genes as core genes: EFEMP2, PTPRN, and POM121L9P 
(Figure 2C).

A risk score was calculated for each patient in the TCGA 
training data set by combining the relative expression of the 
3 DEGs in the prognostic risk model and the LASSO 
coefficients. Patients with a risk score of 2.07 or greater 
(median cutoff) were classified as high risk, and the remaining 
patients were classified as low risk (Figure 2D). The expression 
of EFEMP2, PTPRN, and POM121L9P was significantly 
higher in the high-risk group than in the low-risk group in 
the training data set (Figure S2). Patients in the high-risk 
group had a worse prognosis than patients in the low-risk 
group in the training data set (Figure 2E). To investigate the 
relationship between risk score and the OS of patients with 
glioblastoma, a Kaplan-Meier analysis and a log-rank test 
were performed using the training data set. The median 
survival time of patients was 5.95 months in the high-risk 
group and 12.66 months in the low-risk group; the survival 
time was significantly shorter (P < .001) for patients in the 

Figure 1. DEGs in Glioblastoma From The Cancer Genome 
Atlas Database A, DEGs were screened using the limma 
package of R. The red points represent significantly upregulated 
DEGs, and the green points represent significantly 
downregulated DEGs. NEUROD6, PRKCG, C1QL3 were the 
top 3 downregulated genes. PRAME, ELDR, and HOXD9 
were the top 3 upregulated genes.  B, KEGG enrichment 
pathway analysis showed the 3572 DEGs are involved in focal 
adhesion, cell cycle, cell adhesion molecules, and ECM-
receptor interaction. C, GO enrichment analysis showed that 
the 3572 DEGs are enriched in leukocyte migration, signal 
release, regulation of exocytosis, regulation of ion 
transmembrane transport, and neurotransmitter transport. 

Abbreviations: DEG, differentially expressed gene; ECM, extracellular 
matrix; GO, gene ontology.
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high-risk group than for patients in the low-risk group 
(Figure 2F). The AUC value was 0.83 for the time-dependent 
ROC curve (Figure 2G). 

Validation of the prognostic model using the TCGA test 
data set

To further explore the relationship between risk score 
and OS of patients with glioblastoma, a Kaplan-Meier 
analysis and log-rank test were performed on the TCGA test 
data set. We used the same prognostic risk model; using the 
median of all risk scores, patients with a risk score of 2.07 or 
greater were classified as high risk, and the remaining 
patients were classified as low risk (Figure 3A and 3B). The 
OS was significantly shorter for patients with a higher risk 
score than for patients with a lower risk score (P < .001; 
Figure 3C). As most deaths occurred within 5 years after 
diagnosis, we used a time-dependent ROC curve to assess 
prognosis (Figure 3D); the AUC value was 0.756. The 
expression of EFEMP2, PTPRN, and POM121L9P was 
significantly higher in the high-risk group than in the low-
risk group in the TCGA test data set (Figure 3E). By 
excluding the influence of age, gender, isocitrate 
dehydrogenase status, methylation status of the O-6-

Figure 2. Construction of a Prognostic Model Based on the 
270 Prognostic Differentially Expressed Genes in the Training 
Data Set. A, B, LASSO penalized regression identified 7 
survival-related genes. C, Multiple Cox regression with 
LASSO penalty identified 3 potential prognostic genes. D-F, 
Prognostic classifier analysis of the patients in the internal 
test data set. G, ROC curve of the 3 potential prognostic 
genes for glioblastoma. 

** represent P < .01 
*** represent P < .001.

Abbreviations: AIC, Akaike information criterion; AUC, area under the 
curve; LASSO, least absolute shrinkage and selection operator; ROC, 
receiver operating characteristic. 

Table 1. Features Selected by Multivariate Cox Proportional 
Hazard Regression Model With LASSO Penalty

Gene LASSO Coefficient HR HR.95L HR.95H P value
EFEMP2 0.062 1.06 1.03 1.10 <.001
PTPRN 0.101 1.11 1.06 1.16 <.001
POM121L9P 0.599 1.82 1.26 2.64 <.001

Abbreviations: HR, hazard ratio; HR.95H: higher value of 95% confidence 
interval of hazard ratio; HR.95L: lower value of 95% confidence interval of 
hazard ratio; LASSO, least absolute shrinkage and selection operator.

Figure 3. Validation of the 3 Potential Prognostic Genes for 
Glioblastoma in the TCGA Test Data Set. A-C, Survival status 
of high-risk and low-risk patients with glioblastoma by risk 
score (A), survival time (B), and survival rate (C). D, The ROC 
curve of the 3 potential prognostic genes for glioblastoma. E, 
Expression profile of 3 potential prognostic genes for 
glioblastoma in the test data set. F, Multivariable analyses of 
the risk score, age, gender, isocitrate dehydrogenase status, 
promoter methylation status of the O-6-methylguanine-DNA 
methyltransferase gene, and KPS scores. 

** represent P < .01
*** represent P < .001

Abbreviations: AUC, area under the curve; IDH1, isocitrate dehydrogenase; 
KPS, Karnofsky performance scale; MGMT, O-6-methylguanine-DNA 
methyltransferase; ROC, receiver operating characteristic; TCGA, The 
Cancer Genome Atlas.

Figure 4. Gene Set Enrichment Analysis. Gene set enrichment 
analysis of Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways for the high-risk group (A) and the low-
risk group (B).
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of the products of the DEGs of each risk groups in GBM. 
CGGA data showed that the products of the DEGs of each 
risk group messenger RNA was significantly correlated with 
the mitogen-activated protein kinase signaling pathway, and 
the cell cycle (Figure 5A and 5B).

Developing and validating a predictive nomogram based 
on the 3-gene prognostic risk model

To confirm the prognostic value of the 3-gene prognostic 
risk model, we constructed a nomogram based on the 
prognostic risk model and determined the clinical relevance 
and prognostic value of age, gender, isocitrate dehydrogenase 
status, the methylation status of the O-6-methylguanine-
DNA methyltransferase gene promoter, and the Karnofsky 
performance scale score. The 1-year, 3-year, and 5-year 
survival rates were estimated from the total points, which are 
the sum of the points for each item, as shown in the 
nomogram (Figure 6A). Analysis of the nomogram showed 
that the prognostic risk model was reliable and the accuracy 
of predicting survival in each patient was high. By comparing 
the factors in the nomogram, we also found that the 
prognostic risk model accounts for a high risk score and 
plays an important role in predicting survival. The calibration 
curves showed that the predicted and actual survival rates 
matched well, which indicates that the nomogram can 
accurately predict patient survival (Figure 6B and 6C).

DISCUSSION
GBM is the most common malignant tumor type in the 

central nervous system,14 and there is no targeted therapy to 
ensure the maximum survival rate of patients with glioma.3,15 
In recent years, a large number of researchers have used 
bioinformatics to analyze the data of thousands of expressed 
genes in the human genome through high-throughput 

methylguanine-DNA methyltransferase gene promoter, and 
Karnofsky performance scale score on prognosis, we showed 
that the risk score was an independent prognostic risk factor 
for patients with glioblastoma. Independent prognostic risk 
analysis showed that the hazard ratio was 1.41 (95% CI, 1.20-
1.70) in the TCGA test data set. 

External validation of the prognostic risk model 
To verify that our prognostic risk model can be applied 

universally, we applied the 3-gene prognostic risk model to 
the CGGA, GSE74187, and GSE83300 data sets. 

A total of 374 samples were obtained from the CGGA 
database, and the prognostic risk model successfully 
subdivided the patients into a high-risk group and a low-risk 
group. The OS was significantly different between the 2 
groups, and the median overall survival time of patients was 
9.72 months in the high-risk group and 12.48 months in the 
low-risk group. The survival rate of patients in the high-risk 
group was low (Figure 4A). The AUCs of the 1-year, 2-year, 
and 3-year ROC curves were 0.591, 0.629, and 0.619, 
respectively (Figure 4B). 

Furthermore, we verified in the GSE74187 data set 
(Figure 4C) that patients with GBM in the high-risk group 
had poor prognosis. In the GSE74187 data set, the AUCs of 
the 1-year, 2-year, and 3-year ROC curves were 0.536, 0.677, 
and 0.645, respectively (Figure 4D). We also verified in the 
GSE83300 data set (Figure 4E). In the GSE83300 data set, the 
AUCs of the 1-year, 2-year, and 3-year ROC curves were 
0.737, 0.652, and 0.635, respectively (Figure 4F). Therefore, 
we verified using 3 data sets that the 3-gene prognostic risk 
model has good prediction performance.

We analyzed the molecular mechanism that promotes 
the malignant progression of GBM, and gene set enrichment 
analysis was used to predict the possible biological functions 

Figure 5. Validation of the 3 Potential Prognostic Genes for 
Glioblastoma. Validation of the 3 potential prognostic genes 
for glioblastoma in the CGGA data set (A, B), GSE74187 data 
set (C, D), and GSE83300 data set (E, F).

Abbreviations: AUC, area under the curve; ROC, receiver operating 
characteristic.

Figure 6. Construction of a Nomogram Based on the 3 
Potential Prognostic Genes for Glioblastoma. A, A nomogram 
was constructed based on risk scores and clinical information. 
Calibration plots for the predictive accuracy of the nomogram 
at 1-year survival (B) and at 2-year survival (C). 

Abbreviations: IDH1, isocitrate dehydrogenase; KPS, Karnofsky 
performance scale; MGMT, O-6-methylguanine-DNA methyltransferase. 
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regression with LASSO penalty, we identified 3 DEGs 
(EFEMP2, PTPRN, and POM121L9P), and validation 
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