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Nonalcoholic fatty liver disease (NAFLD) is the 
pathological accumulation of hepatocellular fat in more than 
5% of liver tissue in the absence of viral liver disease, drug 
intake, alcohol consumption, or other secondary cause.1-3 
Over the past century, NAFLD has emerged as an important 

ABSTRACT
Context • The liver is both the largest metabolic and the 
largest immune organ and is closely related to the 
mechanisms of disease development. Clarifying the 
immune environment of the NAFLD liver to determine its 
interactions with biomarkers would be beneficial in 
exploring the mechanisms of disease development.
Objective • The study aimed to identify biomarkers and 
immune cells associated with nonalcoholic fatty liver 
disease (NAFLD) and to analyze the correlation between 
key genes and immune cells in NAFLD, to improve the 
understanding of the mechanisms underlying NAFLD 
and provide potential therapeutic targets.
Design • The research team performed a genetic study.
Setting • The study took place at Qingdao, Shandong 
Province, China. 
Outcome Measures • The research team: (1) obtained the 
NAFLD-related datasets GSE63067, GSE48452, and 
GSE89632 from the Gene Expression Omnibus (GEO) 
database; (2) analyzed immune-cell infiltrates using single-
sample gene set enrichment analysis (ssGSEA) to determine 
the hub immune cells; (3) selected the differentially 
expressed genes (DEGs) between the NAFLD and normal 
samples and screened them to identify the hub genes; (4) 
evaluated the efficiency of the hub genes using receiver 
operating characteristic (ROC) curves; and (5) analyzed the 

correlations between hub genes and immune cells.
Results • The research team: (1) found 28 differential 
immune cells; (2) identified monocytes as the hub immune 
cells; (3) identified 55 DEGs; (4) comparing the top 10 
genes, identified five hub genes: S100 calcium binding 
proteins A12 (S100A12), S100A9, S100A8, selectin L 
(SELL), and sex hormone binding globulin (SHBG); (5) for 
all five, the area under the ROC curve (AUC) was greater 
than 0.6—training set: AUCSA00A12 = 0.699, AUCSELL = 
0.743, AUCS100A9 = 0.735, AUCSHBG = 0.752, and 
AUCS100A8 = 0.703; and validation set: AUCSA00A12 = 
0.852, AUCSELL = 0.905, AUCS100A9 = 0.819, AUCSHBG 
= 0.830, and AUCS100A8 = 0.822; (6) negatively correlated 
SHBG with immune cells (P > .05, r=-0.09); and (7) 
positively correlated S100A12, S100A9, S100A8, and SELL 
with immune cells—rS100A8 = 0.40, rS100A9 = 0.50, 
rS100A12 = 0.38, and rSELL = 0.42, respectively.
Conclusions • Based on bioinformatic analyses, the 
progression of NAFLD may involve monocytes through 
promotion of liver inflammation. The hub genes S100A12, 
S100A9, S100A8, SELL, and SHBG are potential 
biomarkers that may be useful as diagnostic tools or 
therapeutic targets for NAFLD. (Altern Ther Health Med. 
2024;30(6):276-283).
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progression in mice.28 The chronic inflammation associated 
with obesity and insulin resistance influences the development 
of NAFLD. Infiltration of immune cells into adipose tissue 
can control the secretion of anti-inflammatory and pro-
inflammatory factors and induce NAFLD.28,29 Therefore, 
exploring the molecular mechanisms and biomarkers 
associated with the immune system in the liver are essential 
for preventing and treating NAFLD.

Sumarac-Dumanovic et al found that obesity was related 
to increased production of interleukin-17A  (IL-17A).30 
Zuniga et al found that IL-17A knockout mice gained weight 
but that abnormal glucose metabolism didn’t affect them.31 
Harley et al found that the IL-17 pathway was a causal factor 
in the development of NAFLD to steatohepatitis and that 
neutralization of IL17A could significantly decrease obesity-
driven hepatocellular damage in wild-type mice.32 

Genetic Influences
Genetic influences in NAFLD include variants: (1) of 

transmembrane 6 superfamily member 2 (TM6SF2), (2) of 
membrane bound O-acyltransferase domain containing 7 
(MBOAT7), (3) of glucokinase regulator (GCKR), and (4) of 
“isoleucine to methionine substitution at position 148 in the 
patatin-like phospholipase domain containing 3 protein” (I148M 
PNPLA3).33 Yet few studies have occurred examining the 
correlation between immune cells and the markers of disease.

Potential Biomarkers
S100 calcium binding proteins A9 (S100A9). S100A9 

is a calcium-binding S100 protein that has two calcium-
binding N-terminal E helix-C-terminal F helix. (EF)-hand 
motifs linked by a central hinge region. Tilg et al found that 
S100A9 was a diagnostic marker for noninfectious 
inflammatory diseases,34 and Cai et al found a link between 
S100A9 in NAFLD patients and liver injury from 
inflammation related to diabetes mellitus.35 Gonzalez et al 
suggested that other S100 proteins, such as S100A8 and 
S100A12, are also potential biomarkers of inflammatory 
diseases and obesity.36

Peroxisome proliferator-activated receptors (PPARs). 
PPARs play important roles in NAFLD.37 However, the 
mechanism of PPARs and signaling pathways in the 
pathogenesis of NAFLD is unclear.8,9 PPAR pathway-related 
genes include perilipin 1 (PLIN1), fatty acid desaturase 2 
(FADS2), and fatty acid binding protein 5 (FABP5).

Carr et al found that PLIN1 was modestly higher in the 
livers of patients with NAFLD compared to that of healthy 
controls.38 FADS2 is a rate-limiting enzyme in the synthesis 
of long-chain polyunsaturated fatty acids. Arendt et al found 
that the levels of n-3 and n-6, long-chain polyunsaturated 
fatty acids were significantly lower in the livers of patients 
with nonalcoholic steatohepatitis than in the livers of patients 
with simple steatosis, which may have been due to the 
overexpression of FADS2.39 

Westerbacka et al found that FABP5 expression in the liver 
was correlated with hepatic fatty infiltration in patients with 

cause of liver disease and is likely to become a major cause of 
end-stage liver disease.4,5 

NAFLD encompasses a wide range of liver dysfunctions, 
from simple fatty liver to inflammation and fibrosis and even 
cirrhosis, which increases the risk of hepatocellular carcinoma 
by more than 2.5-fold.6 Unhealthy habits, such as a sedentary 
lifestyle and excess calorie intake, are important risk factors 
for NAFLD. With the increasing rate of obesity, the prevalence 
of NAFLD has increased worldwide from 15% in 2005 to 
25% in 2010.7,8 NAFLD is an important personal and public 
healthcare issue because of its high incidence and complex 
clinical management.9 However, the mechanism underlying 
the progression of NAFLD isn’t well understood.10-12

Treatment modalities for NAFLD include specific 
pharmacological treatments, such as vitamin E and 
pioglitazone; glucagon-like peptide 1(GLP-1) agonists; and 
farnesoid X receptor (FXR) and peroxisome proliferator-
activated receptor (PPAR) ligands.13 At the same time, 
physicians propose a healthy diet and increased physical 
activity as a means of disease control. 

Immune System
In the presence of excess fat deposition in the 

enterohepatic axis and liver, the development of NAFLD is 
associated with the immune system. The liver is both the 
largest metabolic and the largest immune organ and is closely 
related to the mechanisms of disease development.14-17 

Immune cells make up 10-20% of the total number of 
hepatocytes and of several types of the liver’s non-stromal 
cells, including Kupffer cells, natural killer cells, and T 
lymphocytes; they play a crucial role in the pathogenesis of 
NAFLD.18,19 Changes in the immune system, including 
immune-cell infiltration and the expression levels of related 
genes, may be important diagnostic tools that physicians 
could use to identify patients at risk of developing NAFLD.

The liver’s immune cells process external antigen- and 
pathogen-rich blood from the gastrointestinal tract to 
maintain an immune-tolerant microenvironment.15 
Deposition of excess fat in hepatocytes alters the liver’s 
metabolic status and immune microenvironment. Clarifying 
the immune environment of the NAFLD liver to determine 
its interactions with biomarkers would be beneficial in 
exploring the mechanisms of disease development.

Monocytes are highly plastic, heterogeneous immune 
cells that play key roles in tissue homeostasis and host 
defense. Peripheral blood monocytes continuously flow into 
a healthy liver.20 In an injured liver, monocyte recruitment 
increases, promoting inflammation and fibrosis.21,22 Gadd et 
al and Liaskou et al found that the number of liver monocytes 
was elevated in the early stages of NAFLD.23,24 Yozgat et al 
found that the monocyte to high-density lipoprotein (HDL) 
ratio significantly increased in NAFLD and was correlated 
with insulin resistance.25

Adipose tissue is an endocrinal organ that regulates 
inflammation and energy.26,27 Stanton  et al found that 
adipose-tissue inflammation was a prerequisite for NAFLD 
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GSE63067 contains data from 11 disease samples and 
seven normal samples; GSE48452 contains data from 14 
disease samples and 14 normal samples; and GSE89632 
contains data from 20 disease samples and 24 normal samples.

Data pre-processing. The research team: (1) initially 
acquired the Series Matrix Files containing the datasets; (2) 
subsequently, merged datasets GSE63067 and GSE48452 
using SilicoMerging 3.0, a component of the R package52; and 
(3) found a batch effect and then eliminated it employing 
Johnson et al’s proposed technique,53 interweaving them to 
form a matrix, a UMAP, that served as the training set, 

Acquisition of immune-cell data. The research team: (1) 
used the single-sample gene set enrichment analysis (ssGSEA) 
algorithm, a built-in algorithm of the Gene Set Variation 
Analysis (GSVA) package, to convert the gene expression 
profile of each sample in the final expression matrix into an 
enrichment profile of the immune gene set; (2) selected 28 
differential immune cell types from the NAFLD and normal 
groups, and (2) analyzed the groups’ samples using the ssGSEA 
algorithm in the R package (GSEA 3.15)54 to identify the 
infiltrating immune cells and calculate their abundance.

Hub immune-cell identification. The research team 
used three methods to screen the identified immune cells: (1) 
based on the analysis of immune-cell infiltration in the 
NAFLD and normal groups, performed a t-test in R4.2.1 and 
selected immune cells with P < .05; (2) conducted a LASSO 
analysis of the immune cells using the glmnet, version 4.1-4, 
R package55; and (3) screened the immune cells using the 
support vector machine-recursive feature elimination (SVM-
RFE) algorithm. The team considered the intersection of the 
data from the three methods to be the hub immune cells.

Identification of differentially expressed genes 
(DEGs). Based on the expression matrix obtained above, the 
research team used the R package limma 3.10.356 to compare 
gene expression between the NAFLD and normal groups and 
obtain the genes’ corresponding p values and log2FCs. The 
team set the thresholds for differential expression at P < .05 
and |log2FC| ≥ 0.585. The team divided the samples into 
NAFLD group and Normal sample group based on the 
expression levels of the DEGs.

Function analysis of the DEGs. The research team: (1) 
used the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
rest application programming interface (API) to obtain gene 
annotations using the latest KEGG pathways; (2) using the 
pathways as the background, mapped the DEGs to the 
background set for enrichment analysis using the R package 
clusterProfiler 3.1557; (3) also downloaded c5.go.bp.v7.4. 
symbols.gmt from the Molecular Signatures Database58 to use 
as the gene ontology (GO) background; and (4) mapped the 
DEGs to the background for enrichment analysis using the R 
package clusterProfiler 3.15. P < .05 was the threshold to 
select significantly enriched pathways and functions.

Hub gene identification. The research team: (1) 
constructed a protein-protein interaction (PPI) network of 
pathway genes using the Search Tool for the Retrieval of 
Interacting Genes/Proteins59 and visualized the network 

NAFLD.40 Thus, the PPAR signaling pathway may play a critical 
role in NAFLD by regulating PLIN1, FADS2, and FABP5.

Selectin L (SELL). SELL is a member of the selectin 
family of adhesion molecules and several leukocytes express 
it, especially monocytes, neutrophils, and lymphocytes, 
which mediate the initial attachment and subsequent rolling 
of leukocytes on activated endothelial cells.41,42

Martinez-Mier et al found that blockade of SELL could 
result in decreased liver enzymes in a mouse model of liver 
ischemia reperfusion, suggesting its critical role in liver 
diseases.43 Drescher et al found that a high expression of 
SELL was correlated with disease activity in nonalcoholic 
steatohepatitis and that SELL knockout protected against 
diet-induced steatohepatitis in mice.44 Therefore, SELL is a 
promising target for therapeutic interventions in NAFLD.

Sex hormone binding globulin (SHBG). SHBG is a liver 
glycoprotein associated with the regulation and transport of 
circulating androgens. In recent years, Toljan et al reported 
that SHBG was a biomarker for several diseases, such as: 
obesity, metabolic syndrome, polycystic ovary syndrome, 
osteoporosis, breast and prostate cancer.45 In particular, 
Yamazaki et al found that low serum levels of SHBG were 
related to high levels of inflammation markers,46 and Deswal et 
al found that SHBG was related to risk of obesity and NAFLD.47 
Deswal et al also suggested that re-establishment of normal 
SHBG levels was negatively associated with reduced  hepatic 
fat accumulation, ,even though they have had difficulty in 
elucidating the mechanism by which this occurs.

Current Study
The current study aimed to identify biomarkers and 

immune cells associated with NAFLD and to analyze the 
correlation between key genes and immune cells in NAFLD, 
to improve the understanding of the mechanisms underlying 
NAFLD and provide potential therapeutic targets.

Methods
The research team performed a genetic study, which 

took place at Qingdao, Shandong Province, China. 
Outcome measures. The research team: (1) obtained the 

NAFLD-related datasets GSE6306748, GSE4845249, and 
GSE8963250 from the Gene Expression Omnibus (GEO) 
database51; (2) analyzed immune-cell infiltrates using single-
sample gene set enrichment analysis (ssGSEA) to determine 
the hub immune cells; (3) selected the differentially expressed 
genes (DEGs) between the NAFLD and normal samples and 
screened them to identify the hub genes; (4) evaluated the 
efficiency of the hub genes using receiver operating 
characteristic (ROC) curves; and (5) analyzed the correlations 
between hub genes and immune cells.

Data source. Download the GSE63067, GSE48452 and 
GSE89632 datasets. Sequencing platforms were GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array, 
GPL11532 [HuGene-1_1-st] Affymetrix Human Gene 1.1 ST 
Array and GPL14951 Illumina HumanHT-12 WG-DASL V4.0 R2 
expression beadchip. Species in all datasets were Homo sapiens.  
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Efficacy evaluation of hub genes. The research team: (1) 
to evaluate the accuracy of the gene signature, drew ROC 
curves for the hub genes using pROC 1.7.261 in R and (2) 
calculated Pearson’s correlation coefficients to determine the 
correlations between the hub genes and hub immune cells.
 
RESULTS
Data Preprocessing 

The UMAP showed that the initial sample distributions 
of the two datasets were significantly different, indicating a 
batch effect (Figure 1). After its removal, the samples from 
the two datasets were interwoven in UMAP. 

Immune-cell Acquisition
Figures 2A, 2B, and 2C show the cluster heatmap, principal 

component analysis (PCA) diagram, and correlation heatmap of 
the 28 differential immune-cell types, respectively. The cluster 
heatmap shows the different expression levels for the different 
immune cells in the NAFLD and normal groups. In the PCA 
diagram, the immune cells in each group were relatively 
clustered with good repetition in the respective groups. PCA1 
and PCA2 are the names of the matrices of different dimensions 
in the space formed after dimensionality reduction of the data, 
and 50.30% and 9.56% denote the contribution of the principal 
components. The correlation heatmap shows that the 28 immune 
cells were positively correlated.

Hub Immune Cells
The T-test analysis identified eight differential, immune-cell 

types between the NAFLD and normal groups (Figure 3A). 
Figure 3B shows the nine immune cell types from the LASSO 
analysis. Figure 3C shows the 21 immune-cell types from the 
analysis using the SVM-RFE algorithm. The combined three 
methods identified only one cell type, monocytes (Figure 3D).

using Cytoscape 3.8.260; (2) selected the top 10 important 
genes in the network using four topological algorithms in 
cytoHubba: maximal clique centrality (MCC), degree, 
maximum neighborhood component (MNC), and edge 
percolated component (EPC); (3) identified the intersecting 
genes from the four algorithms as hub genes; (4) verified the 
differential expression of the candidate hub genes using a  
t test for both the training and validation sets; and (5) 
visualized the expression levels of the five hub genes in the 
training and verification sets using heatmaps and box plots. 

Figure 1. Density Map Before (A) and After (B) Removal 
of the Batch Effect

Abbreviations: GSE, gene set enrichment. 

Figure 2. Heatmap of Immune Cell Clustering and Correlation 
of 28 Immune Cells. A shows the cluster heatmap; B shows the 
PCA plot; and C shows the correlation heatmap. PCA1 and 
PCA2 are the names of the matrices of different dimensions in 
the space formed after dimensionality reduction of the data, 
and 50.30% and 9.56% denote the contribution of the principal 
components. The values of the horizontal and vertical axes 
denote the range of the loading coefficients.

Abbreviations: CD4, cluster of differentiation 4; NAFLD, nonalcoholic fatty 
liver disease; PCA, principal component analysis.

Figure 3. NAFLD-associated Differential Immune Cells. 
Figure 3A shows the diagram of differences in immune cells as 
detected by t test; Figure 3B shows the LASSO assay parameter 
diagrams for immune cell screening; Figure 3C shows the 
immune cell screening by SVM-RFE; and Figure 3D shows the 
Venn diagram of immune cells obtained from t test, LASSO, 
and SVM-RFE.

Abbreviations: CD, cluster of differentiation; LASSO, least absolute 
shrinkage and selection operator; NAFLD, nonalcoholic fatty liver disease; 
PCA, principal component analysis; SVM-RFE, support vector machine-
recursive feature elimination.
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DEGs and Function Analysis
Differential analysis identified 55 DEGs. Figure 4A 

shows a heat map of the genes. Figure 4B shows a volcano 
plot, with 39 upregulated and 16 downregulated DEGs.

Functional enrichment analysis showed that the genes were 
significantly associated with 16 biological processes, such as 
maintenance of location, antimicrobial humoral response, 
neutrophil chemotaxis, and chronic inflammatory response. We 
have selected the top 10 pathways to showcase (Figure 5A). 299 
cellular components, such as intrinsic component of plasma 
membrane, endoplasmic reticulum, and mitochondrion. We 
have selected the top 10 pathways to showcase (Figure 5B). 63 
molecular functions, such as zinc ion binding, transition metal 
ion binding, and organic acid binding. We have selected the top 
7 pathways to showcase (Figure 5C). The DEGs participated in 
seven pathways, including the PPAR signaling pathway, alpha-
linolenic acid metabolism, interleukin 17 (IL-17) signaling 
pathway, and fat digestion and absorption (Figure 5D).

Hub Identification and Validation
The constructed PPI network included 31 nodes (Figure 6A 

and Table 1). Figure 6B shows that the comparison of the top 10 
genes from the four topological analysis algorithms found five 
hub genes: S100A12, S100A9, S100A8, SELL, and SHBG.

PPI Network
As Figures 6C and 6D show, the genes’ expression levels 

were significantly different between the NAFLD and normal 
groups, groups in both the training and verification sets.

Figure 4. Demonstration of Differential Gene Expression. A 
shows the heatmap of differentially expressed genes (DEGS), 
and B shows the Volcano plot of DEGS.

Abbreviations: ALPK2, alpha kinase 2; ANKRD37, ankyrin repeat domain 
37; BBOX1, gamma-butyrobetaine hydroxylase 1; CETP, cholesteryl ester 
transfer protein; CNDP1, carnosine dipeptidase 1; CRP, C-reactive protein; 
CTGF, connective tissue growth factor; CXCL13, CXC motif chemokine 
ligand 13; DGAT2, diacylglycerol O-acyltransferase 2; EFEMP1, EGF 
containing fibulin extracellular matrix protein 1; ENO3, enolase 3; FADS2, 
fatty acid desaturase 2; FABP5, peroxidase; FNDC5, fibronectin type III 
domain-containing protein 5; GDF15, growth/differentiation factor-15; 
GPR88, G-protein coupled receptor 88; GRID1, glutamate receptor, ionotropic, 
delta 1; IF127, interferon alpha-inducible  protein  27; IF144L, interferon 
induced protein 44 like; IGFBP2, insulin-like growth factor-binding protein 2; 
IP6K3, inositol hexakisphosphate kinase 3; LEPR, leptin receptor; MAMDC4, 
MAM domain containing 4; MEP1B, meprin  A subunit beta; MT1H, 
metallothionein 1H; MT1M, metallothionein 1M; MX2, myxovirus resistance 
2; NAFLD, nonalcoholic  fatty liver disease; NCAM2, neural cell adhesion 
molecule 2; NIPAL2, nuclear interacting partner of anaplastic lymphoma 
(NIPAL)-like domain containing 2; NR4A2, nuclear receptor subfamily 4 
group A member 2; P4HA1, prolyl 4-hydroxylase subunit alpha 1; PEG10, 
paternally expressed gene 10; PLA2G2A, phospholipase A2 group IIA; PLIN1, 
perilipin 1; PRKCE, protein kinase C epsilon; RAPGEFL1, rap guanine 
nucleotide exchange factor 1; S100A8, S100 calcium-binding protein A8; 
S100A9, S100 calcium-binding protein A9; S100A12, S100 calcium-binding 
protein A12; SELL, selectin L; SGCE, sarcoglycan epsilon; SHBG, sex 
hormone binding globulin; SLC16A7, solute carrier family 16 member 7; 
SQLE, squalene epoxidase; SRD5A2, steroid 5-alpha reductase 2; TIMD4, 
T-cell immunoglobulin and mucin domain containing 4; TMEM45B, 
transmembrane protein 45B; TMEM154, transmembrane protein 154; 
TRHDE, thyrotropin  releasing hormone degrading enzyme; TSPAN8, 
tetraspanin-8; TSPAN8, tetraspanin-13; TYMS, thymidylate synthase; 
UNC5CL, UNC-5, Unc-5 homolog C; UNC93A, Unc-93 homolog A; ZIC1, 
Zic family member 1.

Figure 5. Enrichment Analysis of Differentially Expressed 
Genes (DEGs). A shows the biological processes; B shows 
the cellular components; C shows the molecular functions; 
and D shows the pathways enriched based on the DEGs.

Abbreviations: PPAR, peroxisome proliferator-activated receptors



This article is protected by copyright. To share or copy this article, please visit copyright.com. Use ISSN#1078-6791. To subscribe, visit alternative-therapies.com

Chen—NAFLD-Related Immune Cells and Genes ALTERNATIVE THERAPIES, JUNE 2024 VOL. 30 NO. 6  281

Efficacy of Hub Genes
Figure 7A shows that the areas under the curve (AUC) 

were greater than 0.6 for all five genes in the training set: 
S100A12 (0.699), S100A9 (0.735), S100A8 (0.703), SELL 
(0.743), and SHBG (0.752). In the validation set, the AUCs 
for the five genes were greater than 0.8: S100A12 (0.852), 
S100A9 (0.819), S100A8 (0.822), SELL (0.905), and SHBG 
(0.830). (Figure 7B).

Correlation of hub genes and immune cells
Figure 8 shows the correlation analysis of the selected hub 

genes and immune cells. SHBG was significantly negatively 
correlated with immune cells (P > .05, r=-0.09), whereas the 
S100A12, S100A9, S100A8, and SELL were significantly 

Figure 6. Four Topological Analysis Algorithms. A shows the 
PPI network in NAFLD. The red squares represent 
upregulated genes, and the blue represent downregulated 
genes. B shows the Venn diagram of the genes identified 
using the four topology analysis algorithms; C shows the box 
plots and heatmaps of hub gene expression in the training 
sets; and Figure 6D shows the box plots and heatmaps of hub 
gene expression in the validation sets.

Abbreviations: ANKRD37, ankyrin repeat domain 37; CETP, cholesteryl ester 
transfer protein; CRP, C-reactive protein; CTGF, connective tissue growth 
factor; CXCL13, CXC motif chemokine ligand 13; DGAT2, diacylglycerol 
O-acyltransferase 2; EFEMP1, EGF containing fibulin extracellular matrix 
protein 1; ENO3, enolase 3; EPC, edge percolated component; FABP5, 
peroxidase; FADS2, fatty acid desaturase 2; FNDC5, fibronectin type III 
domain-containing protein 5; GDF15, growth/differentiation factor-15; IF127, 
interferon alpha-inducible protein 27; IF144L, interferon induced protein 44 
like; IGFBP2, insulin-like growth factor-binding protein 2; LEPR, leptin 
receptor; MCC, maximal clique centrality; MNC, maximum neighborhood 
component; MT1H, metallothionein 1H; MT1M, metallothionein 1M; MX2, 
myxovirus resistance 2; NAFLD, nonalcoholic  fatty liver disease; PEG10, 
paternally expressed gene 10; PLA2G2A, phospholipase A2 group IIA; 
P4HA1, prolyl 4-hydroxylase subunit alpha 1; PLIN1, perilipin 1; S100A8, 
S100 calcium-binding protein A8; S100A9, S100 calcium-binding protein A9; 
S100A12, S100 calcium-binding protein A12; SELL, selectin L; SHBG, sex 
hormone binding globulin; SGCE, sarcoglycan epsilon; SQLE, squalene 
epoxidase; SRD5A2, steroid 5-alpha reductase 2.

Table 1. The Nodes in the Protein-protein Interaction (PPI) 
Network

Name MCC MNC Degree EPC
ANKRD37 1 1 1 1.497
CETP 1 1 1 4.988
CRP 10 3 9 8.847
CTGF 3 1 3 6.062
CXCL13 1 1 1 4.368
DGAT2 2 1 2 3.668
EFEMP1 1 1 1 3.537
ENO3 1 1 1 2.09
FABP5 2 1 2 2.636
FADS2 3 1 3 4.881
FNDC5 1 1 1 5.176
GDF15 2 1 2 6.353
IFI27 2 2 2 2.239
IFI44L 2 2 2 2.234
IGFBP2 1 1 1 3.537
LEPR 1 1 1 5.163
MT1H 2 1 2 4.124
MT1M 1 1 1 2.694
MX2 2 2 2 2.217
P4HA1 1 1 1 1.497
PEG10 1 1 1 1.461
PLA2G2A 3 1 3 6.314
PLIN1 2 1 2 2.991
S100A12 6 4 4 7.765
S100A8 2 2 2 6.055
S100A9 4 3 3 7.001
SELL 4 2 4 7.408
SGCE 1 1 1 1.461
SHBG 3 1 3 5.619
SQLE 1 1 1 3.09
SRD5A2 1 1 1 3.291

Abbreviations: ANKRD37, ankyrin repeat domain 37; CETP, cholesteryl 
ester transfer  protein; CRP, C-reactive protein; CTGF, connective tissue 
growth factor; CXCL13, CXC motif chemokine ligand 13; DGAT2, 
diacylglycerol O-acyltransferase 2; EFEMP1, EGF containing fibulin 
extracellular matrix protein 1; ENO3, enolase 3; EPC, edge percolated 
component; FABP5, fatty acid-binding protein, epidermal; FADS2, fatty acid 
desaturase 2; FNDC5, fibronectin type III domain-containing protein 5; 
GDF15, growth/differentiation factor-15; IFI27, interferon alpha-
inducible  protein  27; IFI44L, interferon induced  protein  44 like; IGFBP2, 
insulin-like growth factor-binding protein 2; LEPR, leptin receptor; MCC, 
maximal clique centrality; MNC, maximum neighborhood component; 
MT1H, metallothionein 1H; MT1M, metallothionein 1M; MX2, myxovirus 
resistance 2; P4HA1, prolyl 4-hydroxylase subunit alpha 1; PEG10, paternally 
expressed gene 10; PLA2G2A, phospholipase A2 group IIA; PLIN1, perilipin 
1; S100A12, S100 calcium-binding protein A12; S100A8, S100 calcium-
binding protein A8; S100A9, S100 calcium-binding protein A9; SELL, selectin 
L; SGCE, sarcoglycan epsilon; SHBG, sex hormone binding globulin; SQLE, 
squalene epoxidase; SRD5A2, steroid 5-alpha reductase 2.

Figure 7. ROC Curves of the Hub Genes the training set (A) 
and the validation set (B)

Abbreviations: FPR, false positive rate; S100A8, S100 calcium-binding 
protein A8; S100A9, S100 calcium-binding protein A9; S100A12, S100 
calcium-binding protein A12; SELL, selectin L; SHBG, sex hormone binding 
globulin; TPR, true positive rate.
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CONCLUSIONS
Based on bioinformatic analyses, the progression of 

NAFLD may involve monocytes through promotion of liver 
inflammation. The hub genes S100A12, S100A9, S100A8, 
SELL, and SHBG are potential biomarkers that may be useful 
as diagnostic tools or therapeutic targets for NAFLD.
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positively correlated with immune cells, with all P < .05, 
rS100A8=0.40, rS100A9=0.50, rS100A12=0.38, rSELL=0.42).

DISCUSSION
In accordance with the prior studies,34-39 the current 

study found that monocytes were higher in NAFLD samples 
compared to the levels in the normal controls. The results 
suggest a critical role for monocytes in NAFLD development 
and progression.

Among the four genes with significant positive 
correlations with monocytes, S100A9 and S100A8 were 
significantly enriched for the IL-17 signaling pathway.62 

Thus, the current research hypothesizes that S100A9 and 
S100A8 may be involved in NAFLD through the IL-17 
signaling pathway. However, the mechanism of influence still 
needs to be further verified in clinical or animal experiments. 
The present study also found that SELL was upregulated in the 
NAFLD group and was positively correlated with monocytes. 

In addition to the four positively correlated genes, the 
current study found that SHBG was negatively correlated with 
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NAFLD group than in with the normal group, suggesting that 
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Abbreviations: S100A8, S100 calcium-binding protein A8; S100A9, S100 
calcium-binding protein A9; S100A12, S100 calcium-binding protein A12; 
SELL, selectin L; SHBG, sex hormone binding globulin
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